"ВентФасад Проект"

Производственно-административное здание

г. Санкт-Петербург, ул. Салова, дом 38, корпус 3 литера А

РАБОЧАЯ ДОКУМЕНТАЦИЯ

Устройство навесной фасадной системы с воздушным зазором "Вектор-1" Облицовка керамическим гранитом

1.09/2020-РД

"ВентФасад Проект" Производственно-административное здание г. Санкт-Петербург, ул. Салова, дом 38, корпус 3 литера А РАБОЧАЯ ДОКУМЕНТАЦИЯ Устройство навесной фасадной системы с воздушным зазором "Вектор-1" Облицовка керамическим гранитом 1.09/2020-РД Выполнил_____//Іяхова /І.В./

Лист	Наименование	Примечание	
	TIGALING TO BUTTING	Tiprinie latine	
2	Ведомость чертежей		
3	Общие данные		
4 – 16	Пояснительная записка		
17	Фасад 1. Раскладка облицовки		
18	Фасад 2. Схема установки конштейнов и направляющих		
19	Фасад З. Схема установки конштейнов и направляющих		
20	Фасад 1. Схема установки конштейнов и направляющих		
21	Фасад 2. Схема установки конштейнов и направляющих		
22	Фасад З. Схема установки конштейнов и направляющих		
23	Узел 1		
24	Узел 2		1
25	Узел З		
26	Узел 4		
27	Узел 5		1
28	Узел 6, Узел 7		
29	Узел 8		
30	Узел 9		
31	Узел 10)
32	Узел 11		1
33	Узел 12	10	1
34	Узел 13	7	
35	Узел 14		
36	Узел 15		
37	Узел 16		
38	Узел 17		
	Рекомендации по креплению кронштейнов к основанию при попадании анкера в шов		
39	кирпичной кладки		1
40	Фасонные Элементы		1
41	Схема устройства противопожарного короба		
			1
		1	1

Согласовано

Ведомость ссылочных документов					
Обозначение	Наименование	Примечание			
СП 20.13330.2016	Нагрузки и воздействия				
СП 16.13330.2011	Стальные конструкции				
СП 70.13330.2012 СНиП 3.03.01–87	Несущие и ограждающие конструкции				
Альбом технических решени й	Альбом технических решений системы "Вектор-1"				
№ 4634-15 om 10.08.15	Техническое свидетельство навесной фасадной системы "Вектор-1"				
№ 5-181 om 07.07.15					
В	домость прилагаемых документов				

Обозна чение	Наименование	Примечание
1.09/2020-П3	Пояснительная записка	
Приложение А	Статический расчет навесной фасадной системы с воздушным зазором (Конструктивная схема "Tun-1")	

						1.09/2020-РД					
						г. Санкт-Петербург, ул. Салова, дом 38, корпус 3 литера А					
⁄1зм.	Кол.уч.	Лист	N.док.	Подп.	Дата	ата					
азро	ιδομαν	Ляховс	ı Л. В.	B	09.2020	П	Стадия	/lucm	Листов		
lpoβe	•рил	Мурашов Д.В.			09.2020	Производственно-административное здание	Р	2			
				Ведомость чертежей	"Венг	пФасад	Проект"				

Общие указания

Проект разработан на основании следующих исходных данных:

- 1. Технического задания на материалы и конструкции;
- 2. Договора на проектирование;
- 3. Геодезической съемки;
- 4. Технического Свидетельства №4634-15 и Альбома Технических Решений системы "Вектор-1".

Объектом проектирования является Производственно-административное

здание, по адресу г. Санкт-Петербург, ул. Салова, дом 38, корпус 3 литера А.

Для облицовки фасадов здания применяется система "Вектор-1".

Проектирование системы НВФ выполнено для ветрового района строительства II, тип местности В по СП 20 13330 2011

В качестве облицовки фасадов здания используются керамогранитные плиты 600х600х10 мм.

Все элементы системы изготавливаются из оцинкованной стали марки 08пс.

Кляммеры изготавливаются из коррозионностойкой стали AISI 201, окрашиваются в цвет керамогранита по RAL заводских условиях.

Фасонные элементы примыканий к окнам, витражам, дверям изготавливаются из оцинкованной стали толщиной 0,5 мм, окраска по RAL .

Соединение элементов подсистемы, кляммеров производится тяговыми заклепками 4х8..10 мм А2/А2.

Соединение фасонных элементов производится тяговыми заклепками 3,2х8 мм A2/A2, в местах видимых соединений заклепки окрасить по RAL.

Крепление кронштейнов в полнотелый керамический кирпич производится фасадным анкером Фиксар ДФ-Б 10х135TD, согласно Акту испытаний крепежных элементов№20СПб 208 от 17 Сентября 2020 г. (см. приложение к проекту).

Краткое описание конструкции, общие требования к материалам и комплектующим для НФС, основные положения по производству работ даны пояснительной записке (листы проекта 4–16).

	_									
	•						1.09/2020-P	Д		
	Изм	Кол.уч.	Лист	г. Санкт-Петербург, ул. Салова, дом 38, корпус 3 л Лист N.док. Подп. Дата		пус 3 лите	ра А			
ŀ		.ботал			- 1	09.2020	T 0.2.0 2 0	Стадия	/lucm	Листов
	Прове	pu/I	Мураш	ов Д.В.		09.2020	Производственно-административное здание	Р	3	
							Общие указания	"Вені	пФасад	Проект"

Состав пояснительной записки

1. Введение	4
2. Краткое характеристика объекта	4
3. Описание конструкции	5
4. Общие требования к материалам и комплектующим для НФС	8
5. Основные положения по производству работ	10
5.1 Разбивка осей установки кронштейнов	10
5.2 Установка анкеров.	11
5.3 Установка кронштейнов.	12
5.4 Монтаж утеплителя	13
5.5 Установка направляющих и выставление плоскости фасада	14
5.6 Монтаж примыканий. Противопожарные мероприятия	14
5.7 Установка панелей облицовки	15
6. Правила эксплуатации системы	15
7. Литература	16

1. Введение

Навесные фасадные системы с вентилируемым воздушным зазором (НВФ) являются одним из наиболее эффективных способов отделки и утепления наружных стен зданий различного назначения.

Конструкция системы представляет собой металлический каркас, на который устанавливаются облицовочные панели. Облицовка обеспечивает эстетичный внешний вид здания и защищает от внешних атмосферных воздействий закрепленный на стене здания слой утеплителя.

В настоящем проекте представлена система навесного вентилируемого фасада здания "Вектор-1" с креплением керамогранитных плит "видимым" способом.

2. Краткое характеристика объекта

Рабочая документация устройства фасадной системы с воздушным зазором «Вектор-1» выполнена на Производственно-административное здание, по адресу г. Санкт-Петербург, ул. Салова, дом 38, корпус 3 литера А

Характеристика стен – несущая часть- железобетонные перекрытия.

Высота здания – 12 м.

Район строительства- г. Санкт-Петербург;

Нормативное значение ветрового давления w/o на 1m^2 поверхности для II ветрового района по СП 20.13330.2016-30 кг/м2;

Тип местности по СП 20.13330.2016- В.

Облицовка фасада - керамогранитные плиты с креплением на кляммерах «видимым» способом.

Материал изделий фасадной системы – окрашенная оцинкованная сталь.

Изм.	Кол.уч	Лист	№ док.	Подпись	Дата

2. Описание конструкции

Несущий каркас состоит из вертикальных направляющих, которые крепятся к кронштейнам, установленным на стену. Крепление кронштейна к основанию осуществляется через термоизолятор с помощью фасадных анкеров. Размер термоизолятора подбирается исходя из размеров опорной поверхности соответствующего кронштейна.

В данном проекте реализована рядовая системы крепления кронштейнов.

Рядовая система

Кронштейны представляют собой L-образные элементы из оцинкованной стали, окрашенные защитным порошковым покрытием в соответствии с паспортом. Направляющие крепятся к несущим кронштейнам через круглые отверстия для фиксированного соединения.

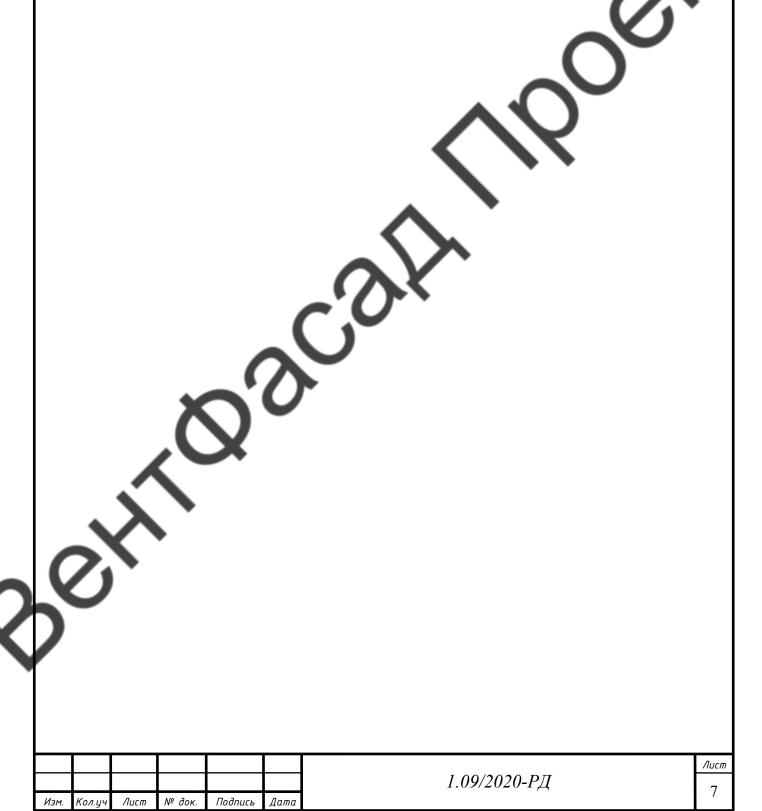
Для рядовой системы в качестве несущих применяются кронштейны КР2-70-180, КР2-70-50 и кронштейны-удлинители УК-70-100. Кронштейны крепятся к стене одним анкерным элементом.

Горизонтальный и вертикальный шаг расстановки кронштейнов принят согласно прочностному расчету проекта.

Для рядовой системы в качестве вертикальных направляющих применяются направляющая ГП-60-40, направляющая ГП-40-40. Все профили стальные оцинкованные окращенные. Направляющие обеспечивают передачу нагрузок от элементов облицовки через кронштейны и соединительные элементы на строительное основание.

Помимо указанных, в системе применяются вспомогательные профили для устройства наружных углов – швеллер угловой ШУ-70-L.

Для крепления элементов каркаса как в рядовой, так и в межэтажной системах, между собой используются заклепки с гильзой и сердечником из коррозионностойкой стали 4x8 (A2/A2).


Керамогранитные плиты в системе «Вектор-1» с видимым креплением удерживаются на фасаде с помощью кляммеров рядовых КЛР-1, угловых кляммеров КЛУ-1 и стартовых КЛС-1. Кляммеры КЛС-1 применяются для удержания нижнего ряда керамогранитных плит, а также в некоторых лучаях для удержания замыкающих керамогранитных плит. Остальные ряды керамогранитных плит удерживаются кляммерами КЛР-1. Кляммеры КЛР-1 крепятся после установки нижележащего ряда керамогранитных плит. Кляммеры крепятся заклепками Ø4х8мм к вертикальным направляющим. На горизонтальных облицовки замыкающих рядах (под примыканию к парапетам) устанавливаются кляммеры КЛУ-1. Минимальное количество заклёпок на один кляммер составляет две штуки. Все кляммеры изготавливаются из коррозионностойкой стали AISI 201, окрашиваются по

Изм.	Кол.уч	Лист	№ док.	Подпись	Дата

RAL в цвет плитки.

Верхние и боковые откосы оконных и дверных проемов, а также оконные сливы изготавливаются из оцинкованной стали с полимерным покрытием.

Обязательные для выполнения требования к комплектующим элементам и материалам, узлам крепления и особенностям монтажа, а также требования пожарной безопасности приведены в техническом свидетельстве ТС №4634-15.

3. Общие требования к материалам и комплектующим изделиям для навесной фасадной системы

Навесная фасадная система (НФС) является ответственной инженерной конструкцией, формирующей наружную защитную оболочку здания. Безопасность, долговечность и нормальное функционирование НФС обеспечивается соблюдением следующих требований:

- 4.1 Материалы и комплектующие изделия, применяемые для НФС «Вектор-1» должны соответствовать перечню материалов Технического свидетельства на систему (ТС №4634-15), проекту 1.09/2020-РД и иметь документы, подтверждающие:
- качество материалов (сертификат соответствия, декларацию о соответствии или заключение по результатам лабораторных испытаний);
- соответствие характеристик материалов основным техническим параметрам системы.
 - 3.2 Элементы подконструкции должны быть изготовлены из оцинкованной стали с полимерным покрытием.
- 3.3 Все применяемые элементы подконструкции (кронштейны, направляющие, анкеры, крепежные элементы) должны сопровождаться документами о составе и свойствах металла. Все материалы могут быть заменены по согласованию с авторами проекта и генпроектировщиками на аналогичные материалы, не ухудшающие качество НФС.
 - 4.4 Тип теплоизоляционного материала определяется проектом НФС.
- 4.5 Все теплофизические и физико-механические показатели теплоизоляционного материала должны быть определены в соответствии с требованиями ГОСТ и ТС на эту продукцию.
- 4.6 Традиционным материалом для теплоизоляционных слоев НФС являются минераловатные плиты.
- 4.7 Для предотвращения распространения огня в воздушной прослойке НФС должен применяться негорючий теплоизоляционный материал.
- $4.8~\rm Для$ наружного слоя двухслойной и однослойной изоляции должны применяться негорючие минераловатные плиты с плотностью не менее $75~\rm kr/m3$.
- 4.9 Для крепления минераловатных плит должны применяться тарель чатые дюбели с термошайбой и с распорным элементом из стали или стеклопластика. Зазор между плитами не более 2мм.
 - 4.10 Тип тарельчатых дюбелей указывается в проекте НФС.
- 4.11 Нормативный срок эксплуатации тарельчатых дюбелей должен быть не меньше нормативного срока эксплуатации теплоизоляционного слоя.
- 4.12 Морозостойкость тарельчатых дюбелей должна быть не менее 150 циклов.
 - 4.13 Диаметр прижимного круга дюбеля (рондоли) не менее 60 мм.
- 4.14 Реологические свойства пластмассовых элементов тарельчатых дюбелей должны быть отражены в сертификате или Техническом свидетельстве на изделие.

							/lucm
·		·			·	1.09/2020-РД	Q
Изм.	Кол.уч	Лист	№ док.	Подпись	Дата		0

4.15 Для устройства защитно-декоративного экрана (облицовки) применяют керамогранитные плиты.

Облицовочные материалы и изделия должны иметь физикомеханические характеристики, обеспечивающие возможность их применения в НФС, в том числе достаточную прочность на изгиб и морозостойкость (150 циклов).

- 4.16 Для крепления облицовочных материалов используются следующие элементы:
 - кляммеры;
 - заклёпки.
 - 4.17 Следует применять следующие виды заклепок:
 - тяговые заклепки из оцинкованной стали марки 08пс.

Размеры заклепок оговорены в проекте 1.09/2020-РД

4.18 Все фасонные элементы, нащельники, отливы, полосы (просвечивающие через швы плитки) и прочие металлические элементы, видимые на фасаде окрасить в заводских условиях в RAL.

Изм.	Кол.уч	Лист	№ док.	Подпись	Дата

5. Основные положения по производству работ

5.1 Разбивка осей установки кронштейнов

- 5.1.1. Привязка НФС к зданию начинается с фиксации на ограждающих конструкциях, колоннах, диафрагмах здания горизонтальных базовых осей по всему периметру.
- 5.1.2. Фиксация горизонтальных осей выполняется с помощью нивелира или гидростатического уровня.
- 5.1.3. На каждой плоскости ограждающих конструкций маркером отмечаются две точки, по которым может быть натянута струна.
- 5.1.4. Для контроля правильности фиксации горизонтальной базовой оси необходимо убедиться в сходимости начальной и последней точек фиксации.
- 5.1.5. На каждой захватке на всю её высоту фиксируются вертикальные оси, отступая от углов здания, оконных и дверных блоков.
- 5.1.6. Проектное расстояние от наружного угла здания до вертикальной оси установки анкеров крепления кронштейнов является минимально допустимым.
- 5.1.7. Если захватка переменна по высоте, то вертикальные оси фиксируют по границам плоскостей одной высоты.
- 5.1.8. По вертикальным осям от зафиксированной горизонтальной оси с помощью рулетки фиксируются нижние и верхние горизонтальные оси установки кронштейнов.
- 5.1.9. Правильность разметки нижней и верхней горизонтальных осей контролируется по натянутой струне уровнем.
- 5.1.10. От нижней горизонтальной оси по вертикальным осям с помощью рудетки наносятся точки сверления отверстий по размерам согласно рабочей документации.
- 5.1.11. От базовой вертикальной оси на нижних и верхних горизонтальных осях с помощью рулетки маркером наносятся точки сверления отверстий по размерам согласно рабочей документации.
- 5.1.12. Правильность нанесения точек сверления по нижним и верхним горизонтальным осям контролируется теодолитом или отвесом.
- 5.1.13. По нанесенным на вертикальных осях точкам сверления отверстий с помощью рулетки по размерам согласно рабочей документации маркером наносятся остальные точки сверления отверстий, расположенные вдоль горизонтальных осей.
- 5.1.14. Правильность нанесения вертикальных рядов точек сверления необходимо проконтролировать теодолитом или отвесом.

							Лист
·					·	1.09/2020-РД	10
Изм.	Кол.уч	Лист	№ док.	Подпись	Дата		10

- 5.1.15. Разметка точек сверления отверстий в окрестностях проемов осуществляется согласно рабочей документации относительно границ проемов.
- 5.1.16. Для вертикальной конструкции металлокаркаса допускается смещение точек крепления отдельного кронштейна или горизонтального ряда кронштейнов только по вертикали.

5.2 Установка анкеров

- 5.2.1 В обозначенных точках просверливаются отверстия под анкер для установки несущих кронштейнов.
- 5.2.2 После высверливания отверстия необходимо продуть его ручным насосом для удаления крошки материала стены.

5.3 Установка кронштейнов

- 5.3.1. В просверленные отверстия устанавливаются в сборе паронитовые прокладки, кронштейны и анкерные элементы.
- 5.3.2. Одновременно с установкой кронштейнов устанавливаются вспомогательные элементы для крепления оконных и дверных откосов.
- 5.3.3. Выставление кронштейнов в единую плоскость производится при помощи ротационного нивелира или струн и отвесов.

5.4 Монтаж утеплителя

- 5.4.1. Монтаж утеплителя производится после установки кронштейнов, начиная с нижнего ряда с разбежкой швов между плитами.
- 5.4.2. Плиты утеплителя укладываются плотно друг к другу так, чтобы в швах не было пустот. Если избежать пустот не удаётся, они должны быть заделаны тем же материалом.
- 5.4.3. При установке плиты утеплителя накалываются на консоли кронштейнов, при этом не допускается подъем консолей кронштейнов.
- 5.4.4. Крепление плит к основанию производится анкерами тарельчатого гипа по рекомендациям производителя утеплителя.
- 5.4.5. Угловые стыки плит утеплителя делаются с перевязкой по плоскостям.

Изм.	Кол.цч	Лист	№ док.	Подпись	Дата

5.5 Установка направляющих и выставление плоскости фасада

- 5.5.1. Если требуется выравнивание плоскости фасада, то это осуществляется с помощью кронштейнов удлинителей, которые крепятся к несущим кронштейнам минимум на две заклепки из коррозионностойкой стали. Минимальный допустимый перехлест несущего кронштейна и кронштейн-удлинителя составляет 30мм. Затем на кронштейн-удлинители устанавливаются направляющие (горизонтальные или вертикальные).
- 5.5.2. При вертикальной конструкции металлокаркаса сначала выставляются в проектное положение и крепятся крайние слева и справа вертикальные направляющие профили данной захватки в одной вертикальной плоскости. Используя установленные направляющие профили, как базу, натягивая на них струны, устанавливаются все оставшиеся вертикальные направляющие профили. Плоскостность и вертикальность установки профилей проверяется уровнем, отвесом или ротационным нивелиром.
- 5.5.2. Затем в проектное положение, устанавливаются угловые монтажные полки и угловые стойки. Вертикальность установки профилей проверяется отвесом.
- 5.5.3. Между вертикальными направляющими профилями по вертикали оставляется зазор 10 мм для компенсации температурных расширений.
- 5.5.4. К несущим направляющим закрепляются все дополнительные необходимые элементы металлокаркаса согласно узлам рабочего проекта.

5.6 Монтаж примыканий. Противопожарные мероприятия

Оформление оконных откосов производится в соответствии с экспертным заключением ЦНИИСК им. В.А.Кучеренко №5-181 от 07.07.2015г.

По периметру сопряжения навесной фасадной системы с элементами заполнения проемов с целью предотвращения возможности проникновения огня во внутренний объем фасадной системы устанавливаются противопожарные короба обрамления окон/дверей. Противопожарные короба изготавливаются в виде составной конструкции, монтируемой непосредственно на фасаде из соответствующих элементов. Элементы противопожарного короба (боковые и верхний откосы) объединяются в единый короб при помощи заклепок из коррозионностойкой стали.

Элементы противопожарного короба выполняются из оцинкованной стали толщиной не менее 0.5 мм. При этом элементы верхнего и бокового откосов короба имеют выступы-бортики с вылетом за лицевую поверхность облицовки основной плоскости фасада, высота/ширина поперечного сечения которых - 35 мм, вылет - 25 мм.

							Лист
						1.09/2020-РД	12
Изм.	Кол.уч	Лист	№ док.	Подпись	Дата		12

Короб имеет крепление к несущей стене здания при помощи изготавливаемых противопожарных отсечек, ИЗ оцинкованной стали толщиной 0,5мм мм, закрепляемых дюбель-гвоздями к основанию. Шаг установки противопожарных отсечек для крепления верхнего откоса не более 400 мм, боковых откосов - не более 600 мм, при этом боковые откосы облицовки дополнительно крепятся co стороны К направляющим, расположенным вдоль них с шагом не более 600 мм.

Во внутреннем объеме верхнего откоса противопожарного короба устанавливется полоса из негорючей минераловатной плиты плотностью не менее 75 кг/м³, шириной не менее ширины проема, высотой не менее 30 мм и глубиной равной глубине противопожарного короба.

По периметру сопряжения навесной фасадной системы «Вектор-1 КГ» с другими системами утепления (штукатурными или навесными), или наружными ненесущими навесными стенами со светопрозрачными элементами (в том числе с витражными системами) их следует разделять по границе контакта полосами из стали толщиной не менее 0,5 мм и высотой, равной большей из толщин сопрягаемых систем.

5.7 Установка панелей облицовки

- 5.7.1. Монтаж керамогранитных плит на основной части здания выполняется на кляммеры КЛР-1 и КЛС-1, которые крепятся к направляющим профилям двумя заклёпками Ø4х8мм из коррозионностойкой стали. На замыкающих рядах плитки у парапетов, под оконными проемами кляммеры КЛУ-1, крепящиеся двумя заклепками Ø4х8мм из коррозионностойкой стали и кляммеры КЛС-1.
- 5.7.2. Базовый ряд кляммеров и профилей выставляется по уровню в проектное положение.
- 5.7.3. Отметка базового ряда переносится на все плоскости по периметру здания.
 - 5 7.4. При установке плит необходимо:
- контролировать шов-зазор при помощи шаблона, соответствующего проектному размеру зазора между плитами;
- проектный размер вертикального и горизонтального швов между керамогранитной плиткой 8±2 мм.
- проверять горизонтальность и вертикальность установленных плит по уровню;
- особое внимание необходимо уделить стыковке горизонтальных и вертикальных швов между плитами на углах здания.

							Лист
·		·			·	1.09/2020-РД	12
Изм.	Кол.уч	Лист	№ док.	Подпись	Дата		13

- 5.7.5. Между облицовочным слоем и слоем утеплителя образуется вентилируемый воздушный зазор, с помощью которого влага, накапливающаяся в утеплителе, эффективно удаляется и обеспечивается необходимый температурно-влажностный режим в теплоизоляционном слое и стене в целом. Допускается минимальное значение зазора 40 мм, максимальное 200 мм, при этом должен быть обеспечен воздушный зазор не менее 20 мм между наружной поверхностью утеплителя и вертикальной направляющей.
- 5.7.6. Так как при строительстве здания и монтаже НФС невозможно избежать отклонений от проекта некоторые размеры плит уточняются при монтаже.

Все скрытые работы, проводимые в процессе монтажа, оформляются актами.

Перечень актов на скрытые работы:

- 1. Акт на установку кронштейнов навесного фасада.
- 2. Акт на устройство теплоизоляции под навесной вентилируемый фасад.
- 3. Акт на монтаж подконструкции.
- 4. Акт на монтаж керамогранитных плит.

Изм.	Кол.уч	Лист	№ док.	Подпись	Дата

6. Правила эксплуатации системы

В процессе эксплуатации здания не допускается крепления каких-либо деталей и устройств непосредственно к облицовочным панелям.

Не следует допускать механические и ударные воздействия на поверхности облицовки фасадов.

Также следует предотвратить возможность попадания воды с крыши здания на облицовочную панель, для чего необходимо содержать желоба на крыше и водосточную систему в рабочем состоянии.

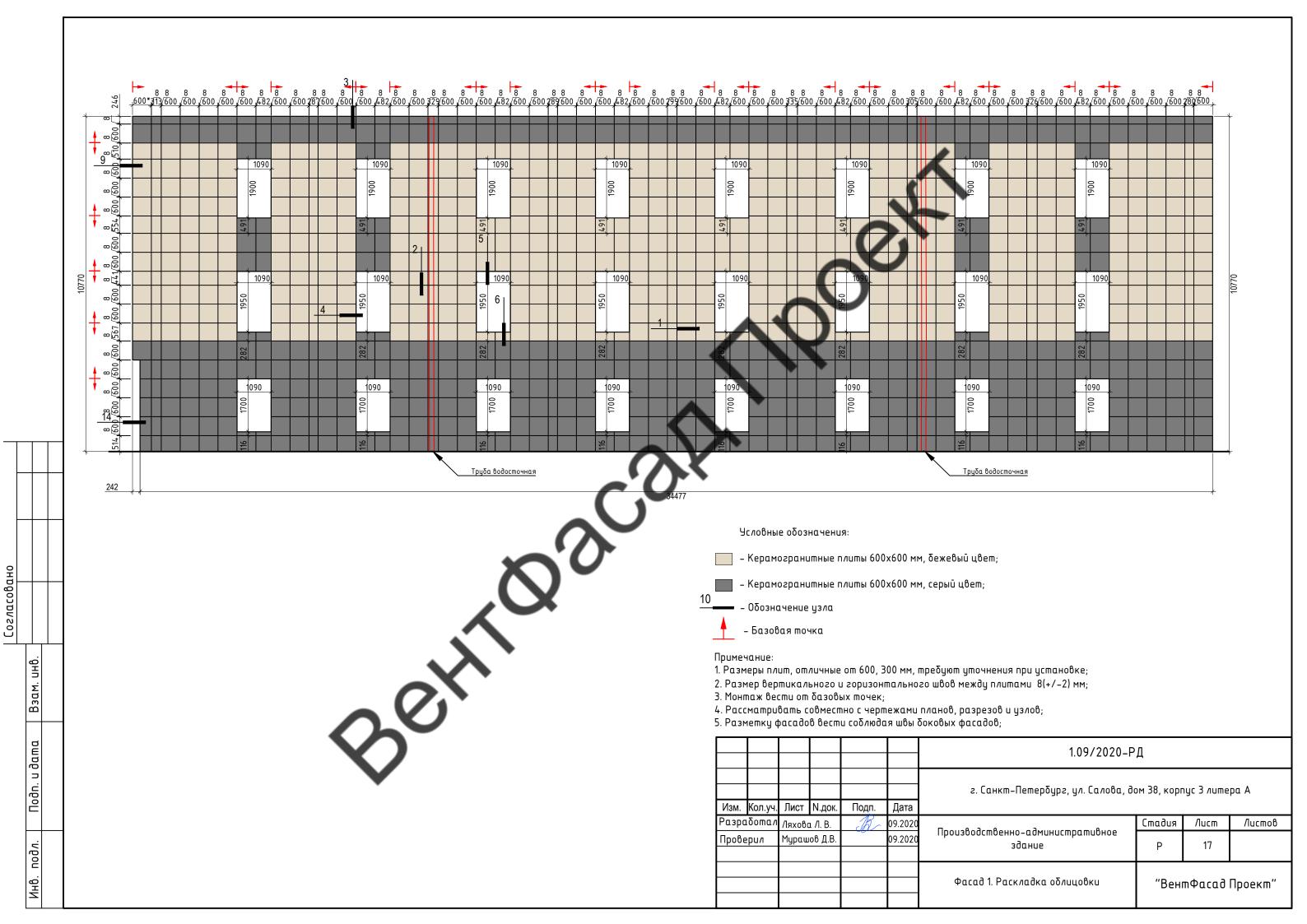
В процессе эксплуатации необходимо вести наблюдение за состоянием наружной обшивки и элементов крепления облицовочного материала.

При обнаружении:

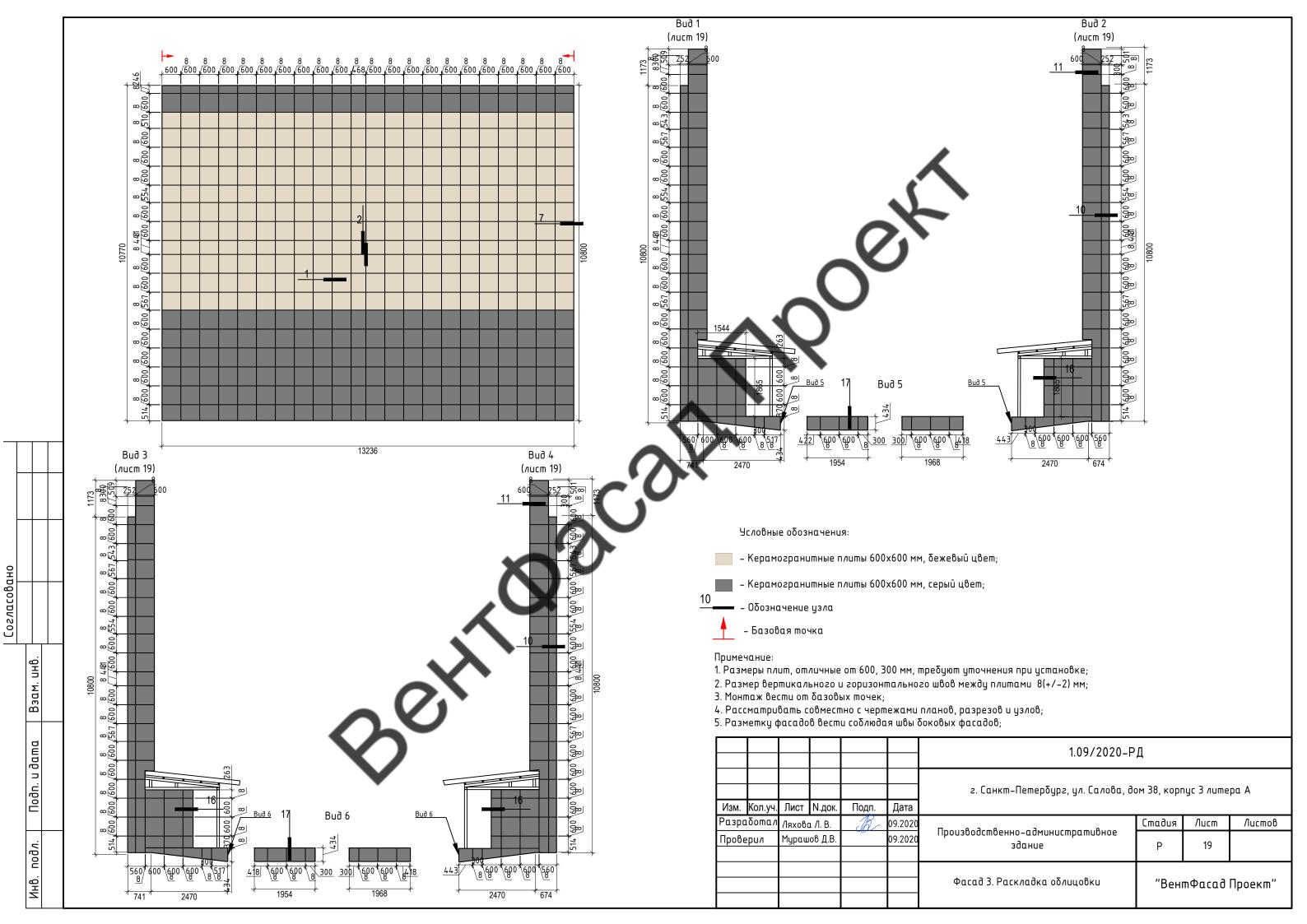
- обрезов ушек кляммера (одного и более на плиту);
- при появлении первых признаков промерзания;
- при визуальном нарушении вертикальности и горизонтальности фасадных поверхностей необходимо вызвать представителя специализированного технического надзора, с целью выработки решения о принятии мер по предотвращению дальнейшего разрушения системы.

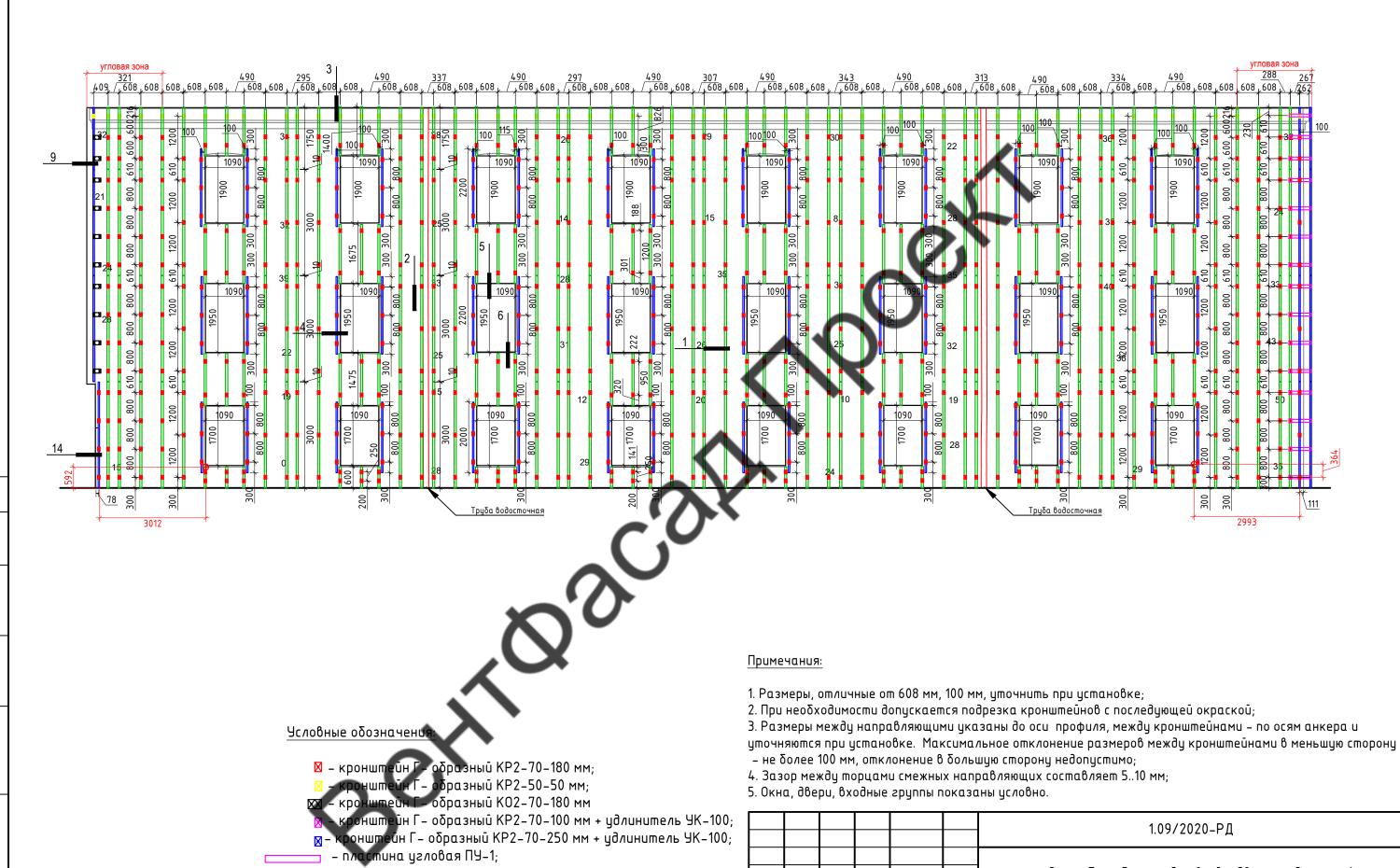
Уход за облицовкой фасада заключается в его регулярной очистке и, при необходимости, периодическом восстановлении.

Промывка водой является одним из наиболее эффективных способов очистки облицовочной панели. Рекомендуется сочетать промывку с ручной очисткой поверхности щетками без абразивного воздействия на поверхность панелей.

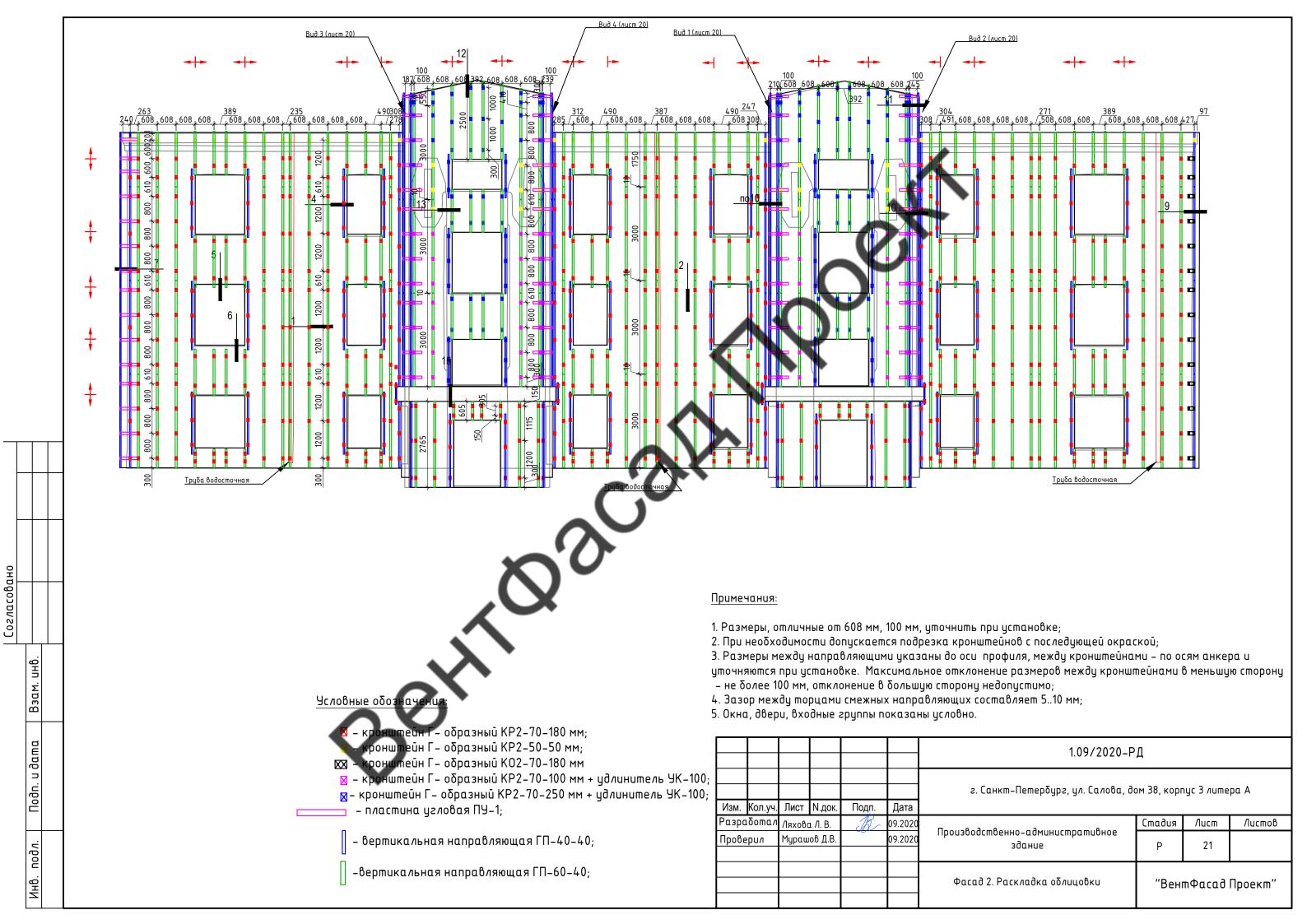

Облицовочные плиты с дефектами, не подлежащими восстановлению, заменяются в соответствии с инструкцией завода-изготовителя системы.

Изм.	Кол.уч	Лист	№ док.	Подпись	Дата


7. Литература


- 1. СП 20.13330.2016 «Нагрузки и воздействия»
- 2. СП 16.13330.2016 «Стальные конструкции»
- 3. СП 131.13330.2012 «Строительная климатология и геофизика»
- 4. СП 28.13330.2012 «Защита строительных конструкций от коррозии»
- 5. ГОСТ 27751-2014 «Надежность строительных конструкций. Основны положения по расчету».
- 6. СП 70.13330.2012 «Несущие и ограждающие конструкции»
- 7. Альбом технических решений системы "Вектор-1"
- 8. ТС № 4394-15 от 07.07.15. Техническое свидетельство навесной фасадной системы "Вектор-1"
- 9. Экспертное заключение №5-181 от 07 июля 2015г. по пожарной безопасности применения навесной фасадной системы "Вектор-1". Облицовка керамогранитными плитами.

							Лист	
						1.09/2020-РД		
Изм.	Кол.уч	Лист	№ док.	Подпись	Дата			

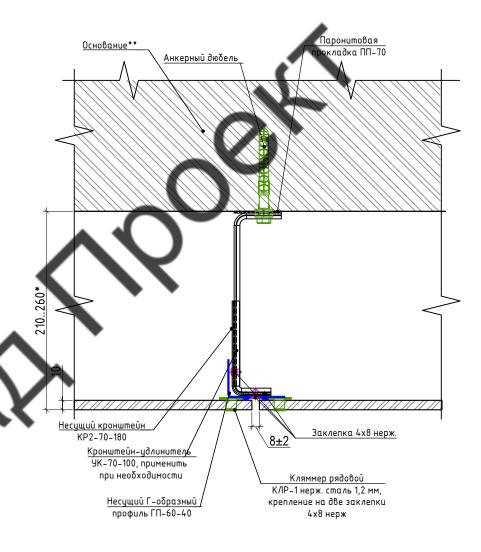

Согласовано

Взам. инв

г. Санкт-Петербург, ул. Салова, дом 38, корпус 3 литера А - вертикальная направляющая ГП-40-40; Изм. Кол.уч Лист

N.док. Подп. Дата Разработал Ляхова Л.В. 09.202 Стадия /lucm Производственно-административное -вертикальная направляющая ГП-60-40; Мурашов Д.В. Проверил 09.202 здание 20 Фасад 1. Раскладка облицовки "ВентФасад Проект"

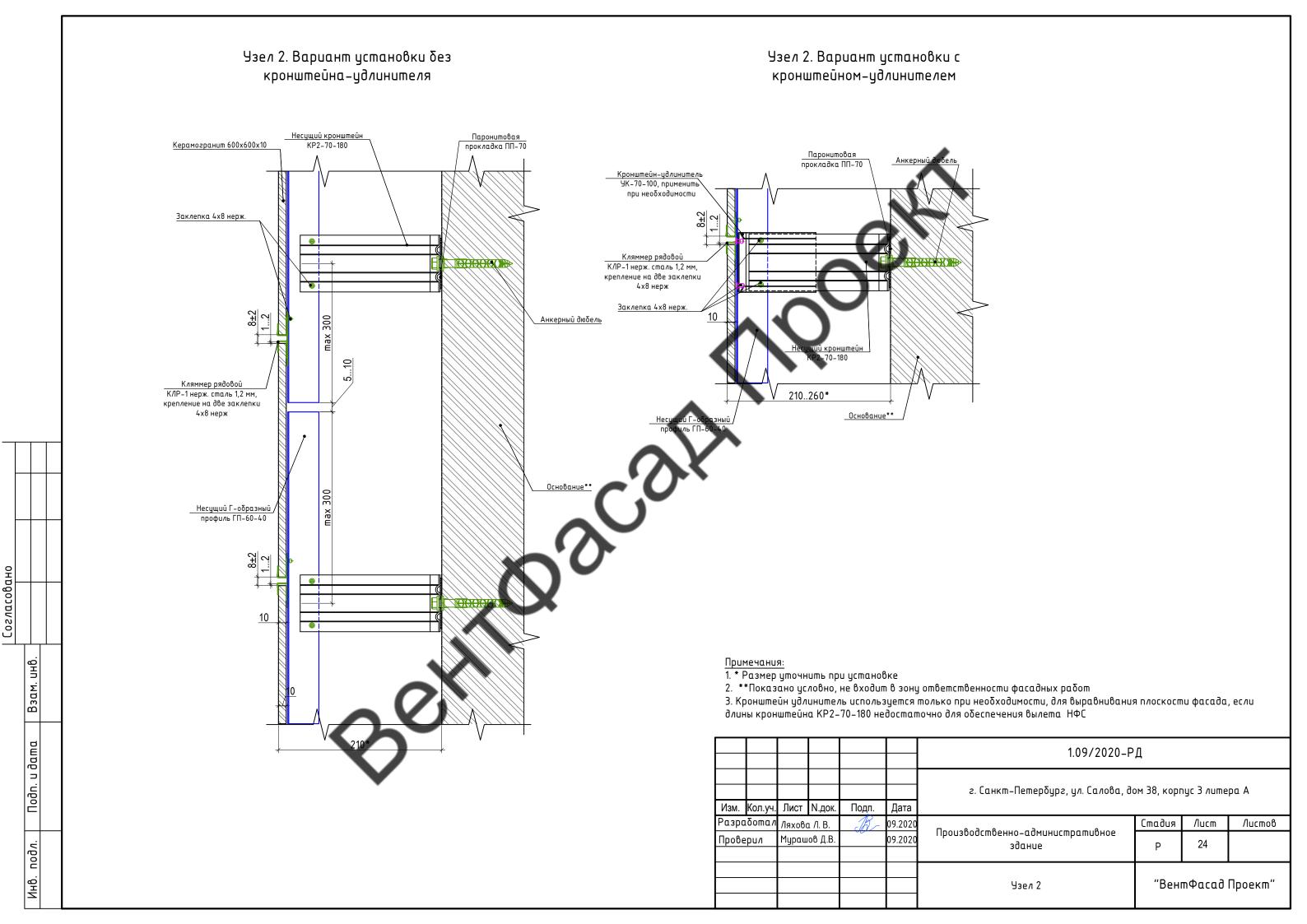
Листов

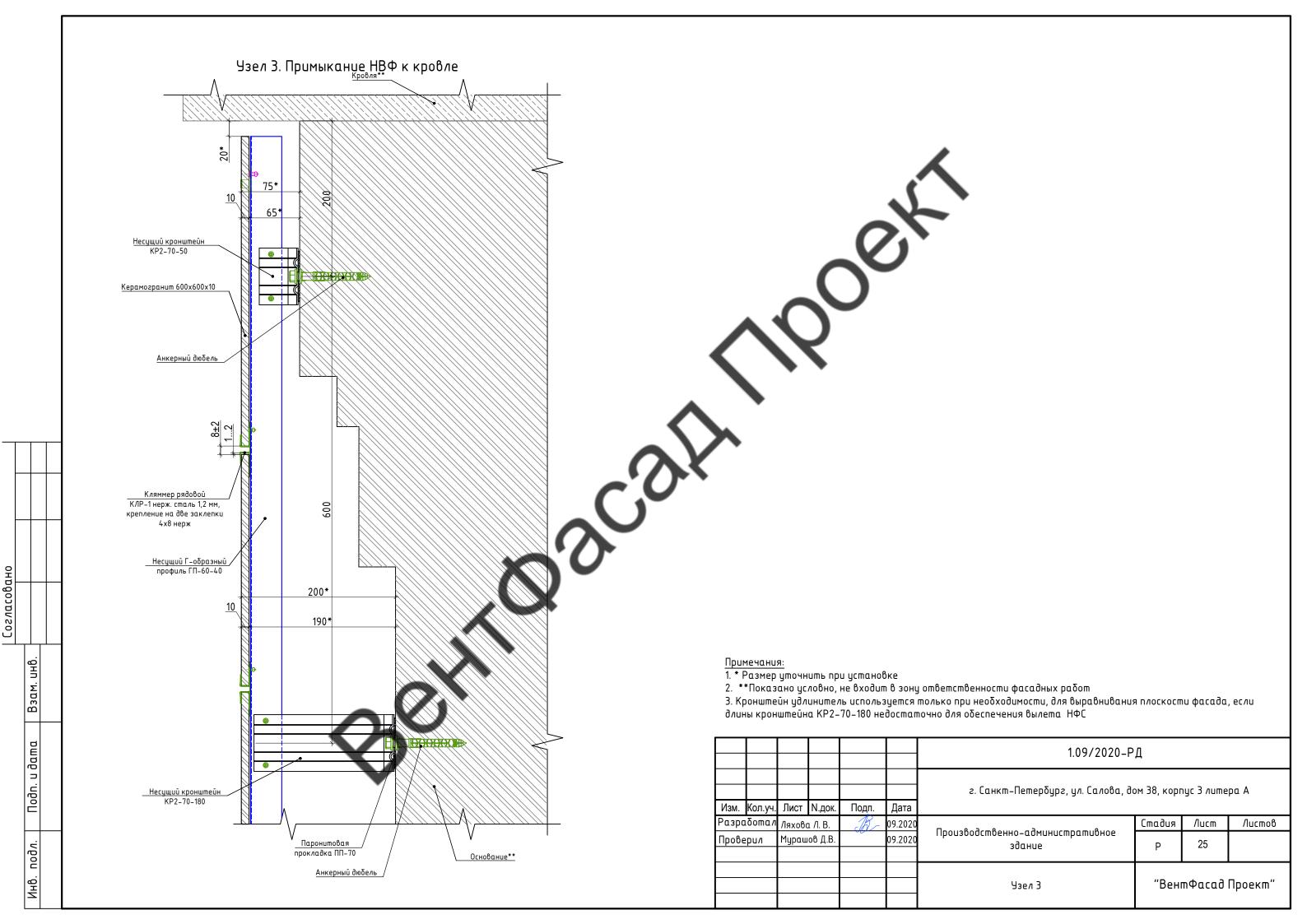

кронштейна-удлинителя Паронитовая прокладка ПП-70 Основание** Анкерный дюбель 10 Несущий кронштейн КР2-70-180 Несущий Г-образный / профиль ГП-60-40

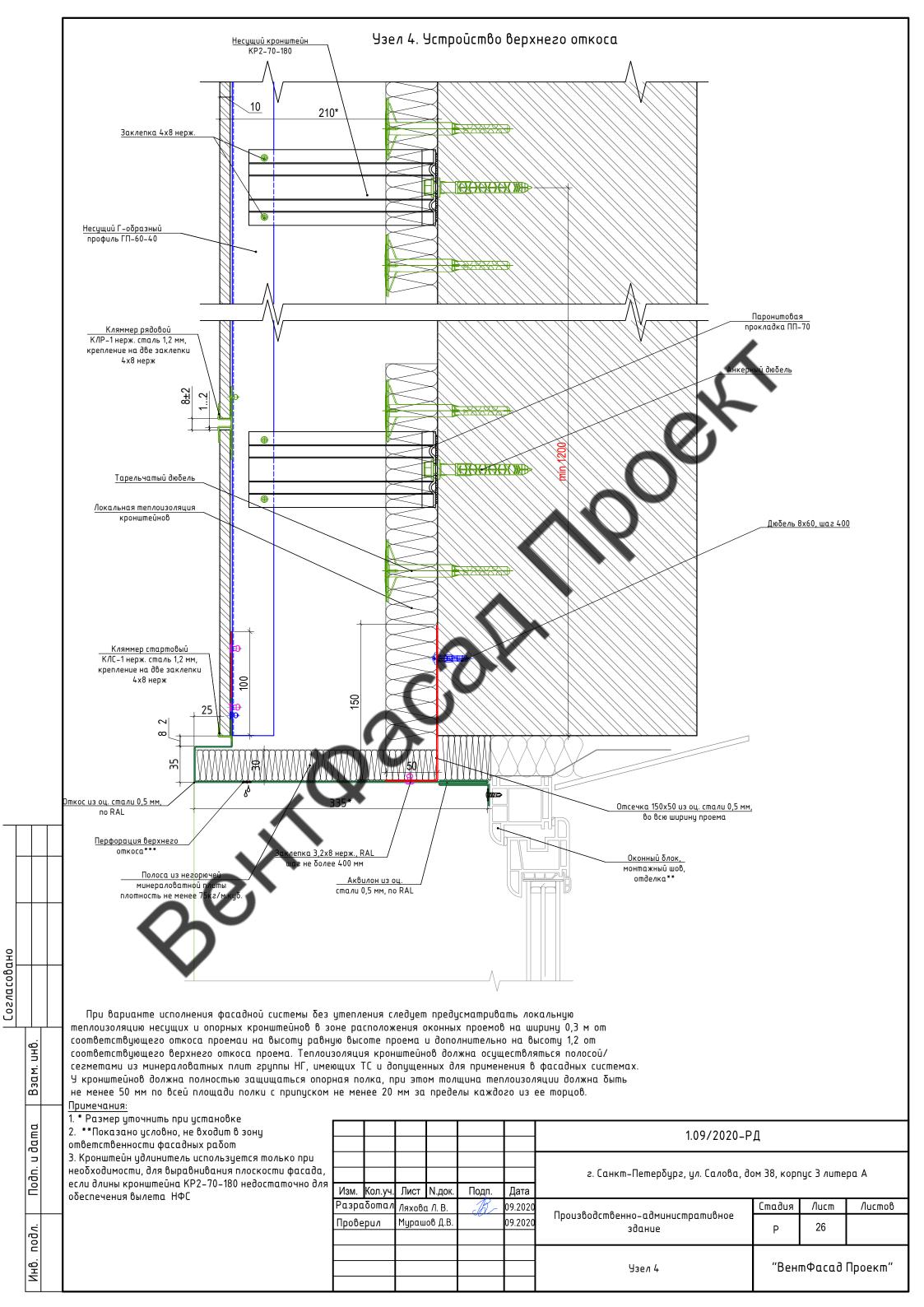
Взам. инв.

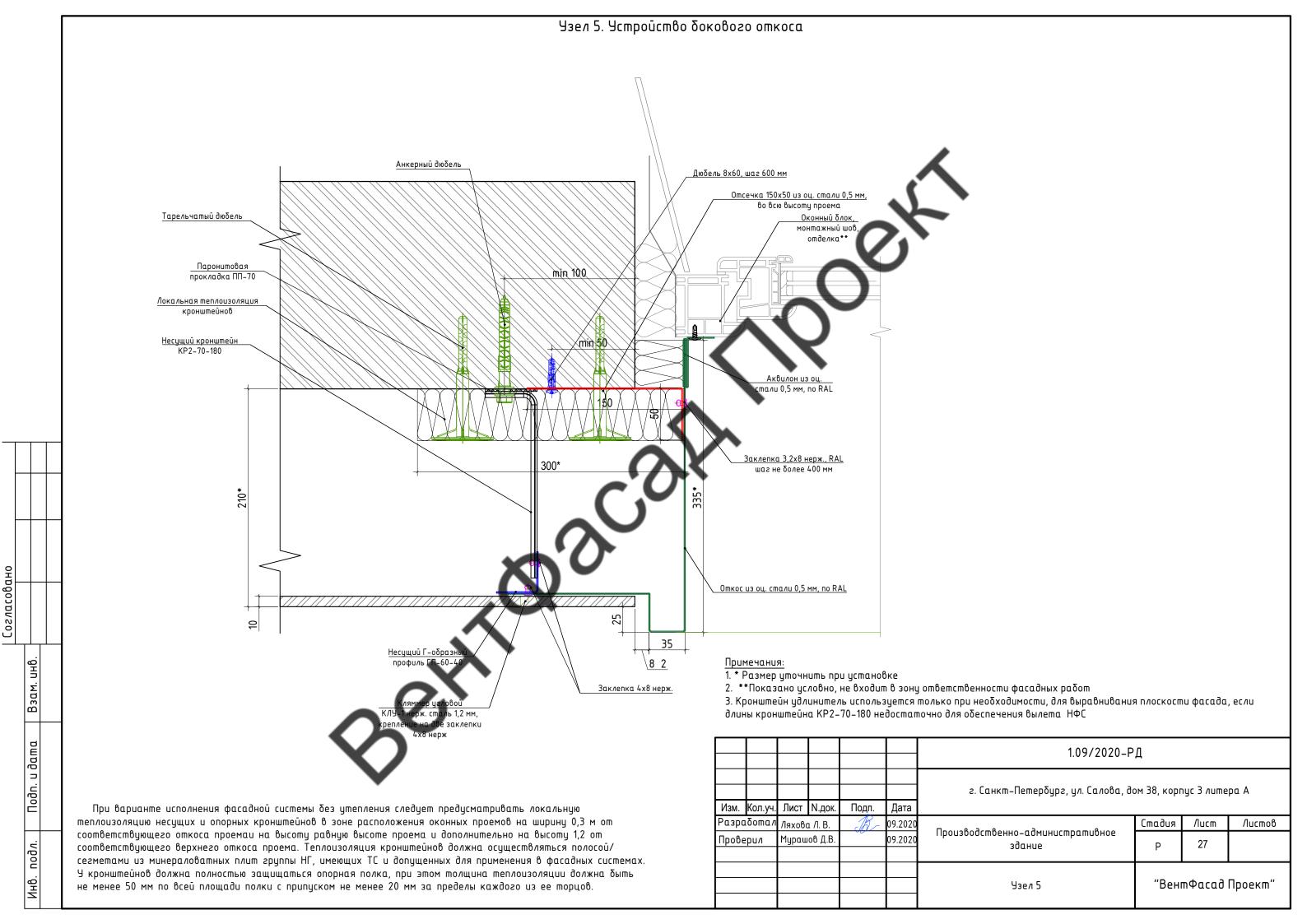
Подп. и дата

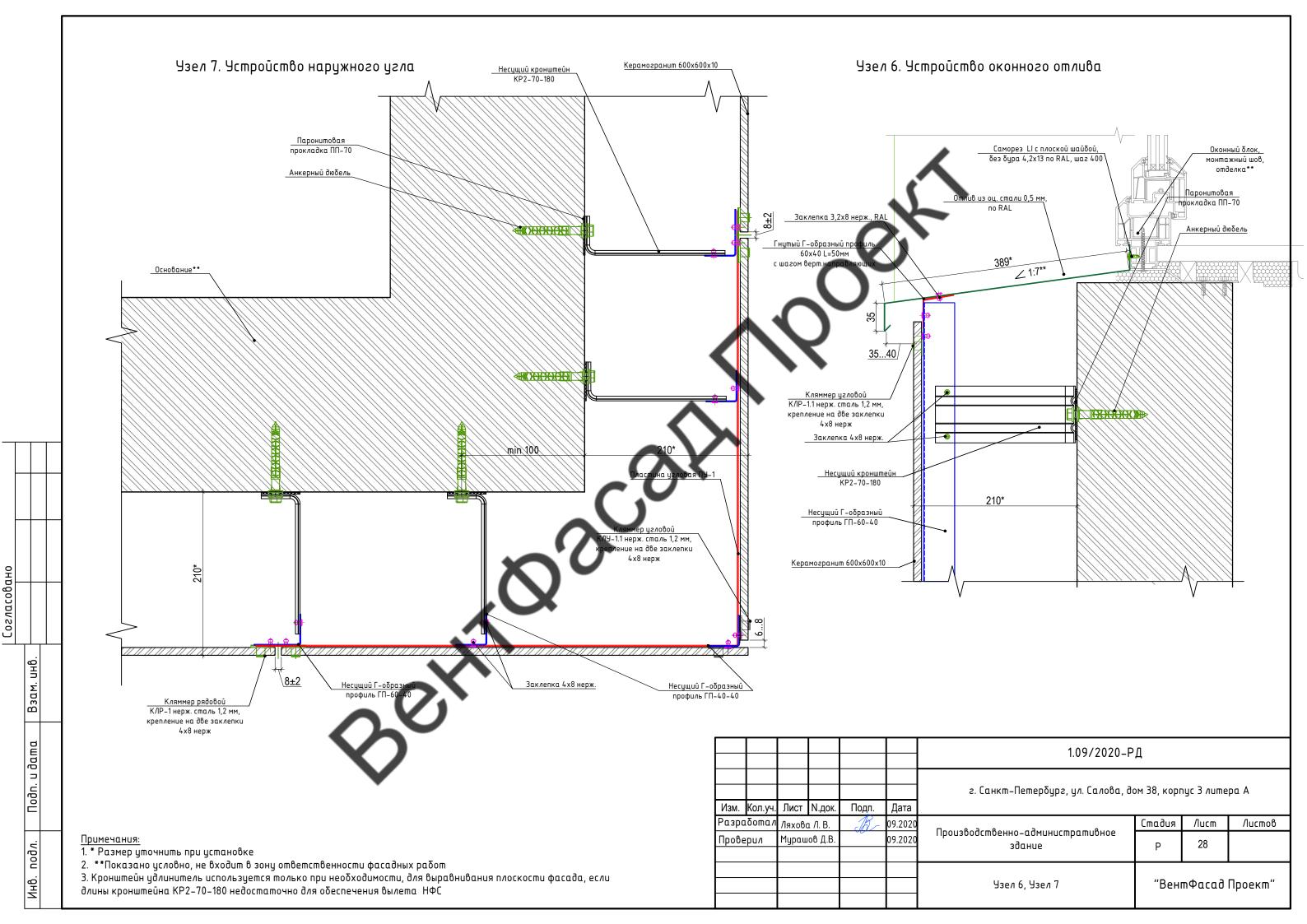
Узел 1. Вариант установки без

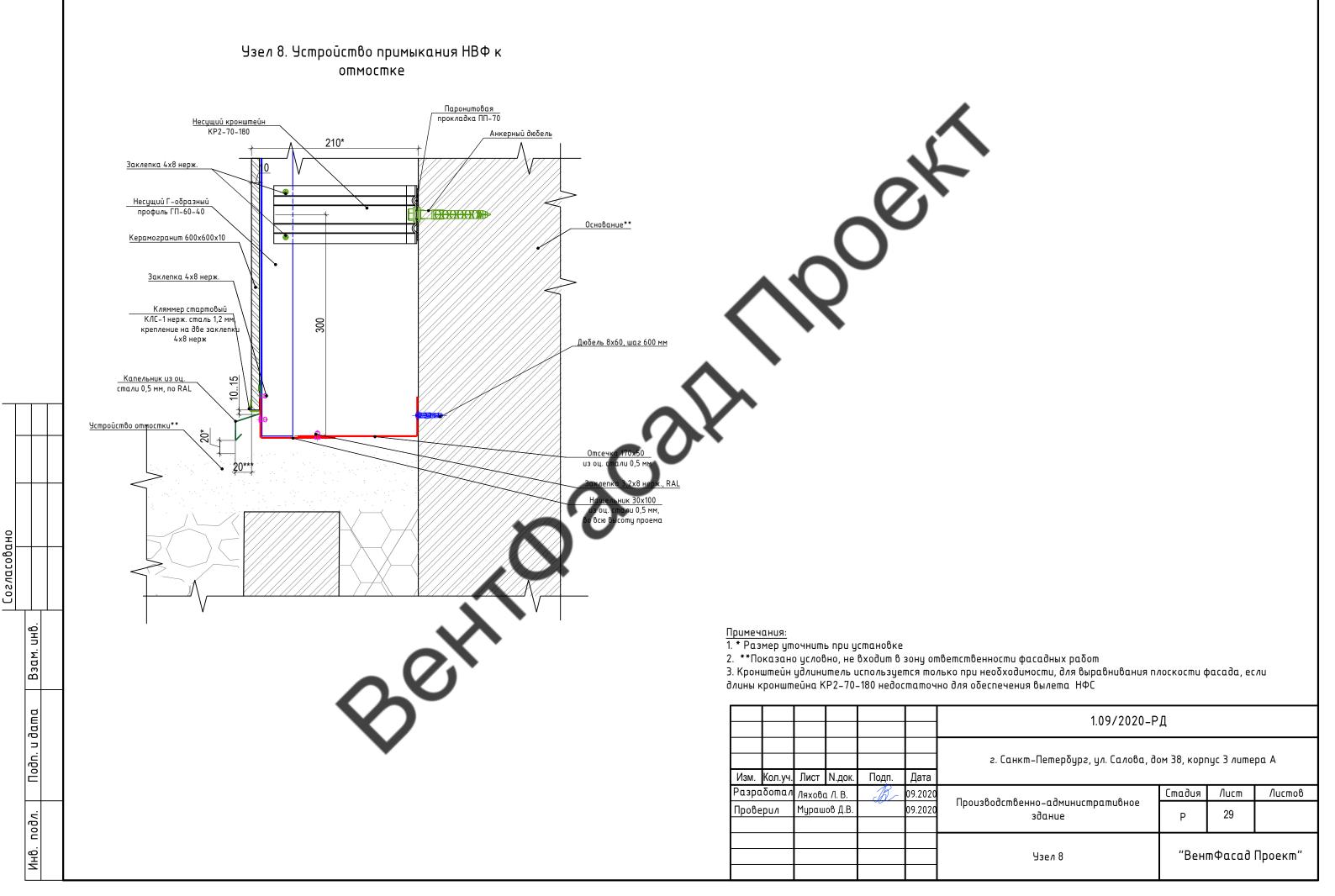

Узел 1. Вариант установки с кронштейном-удлинителем

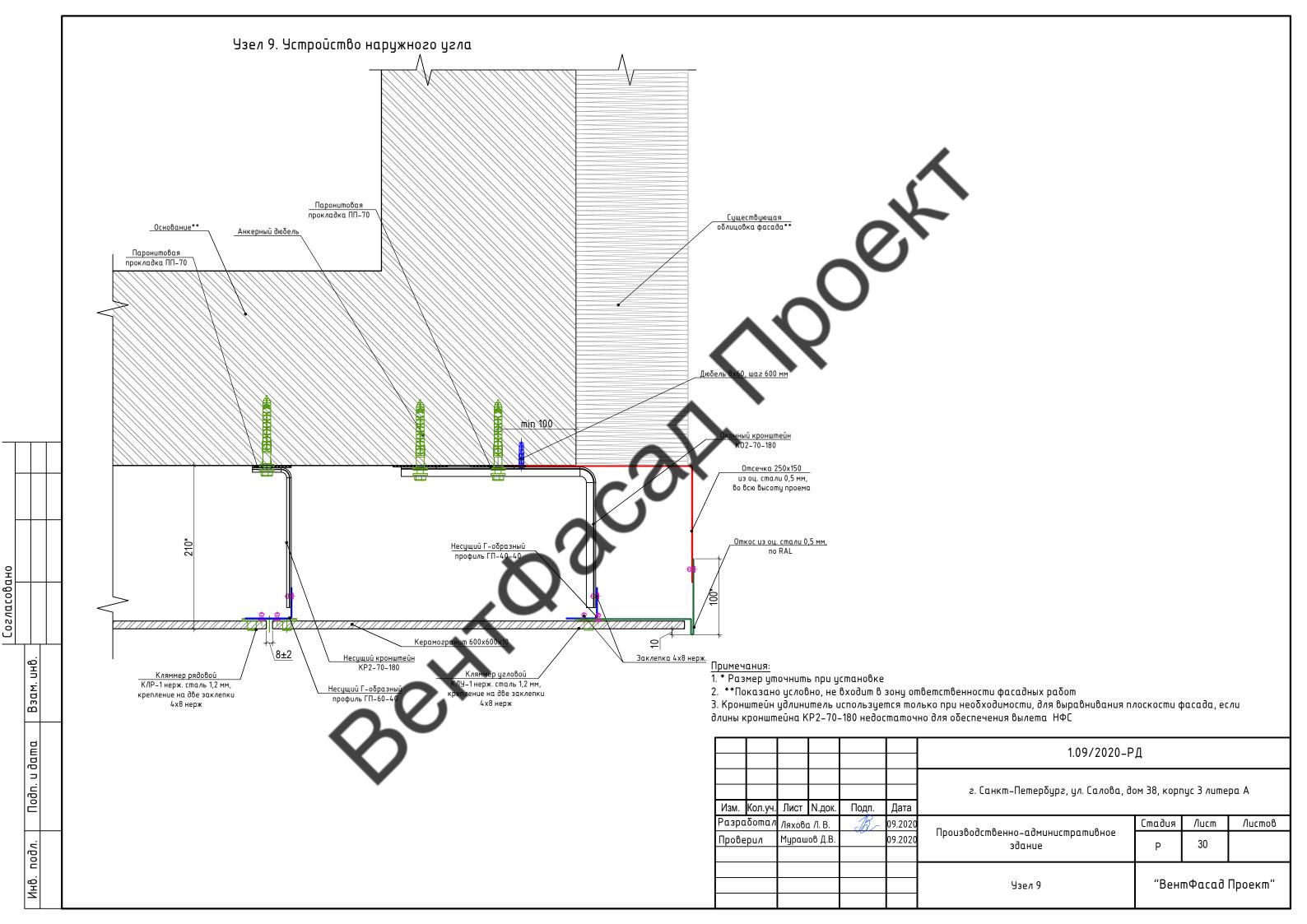


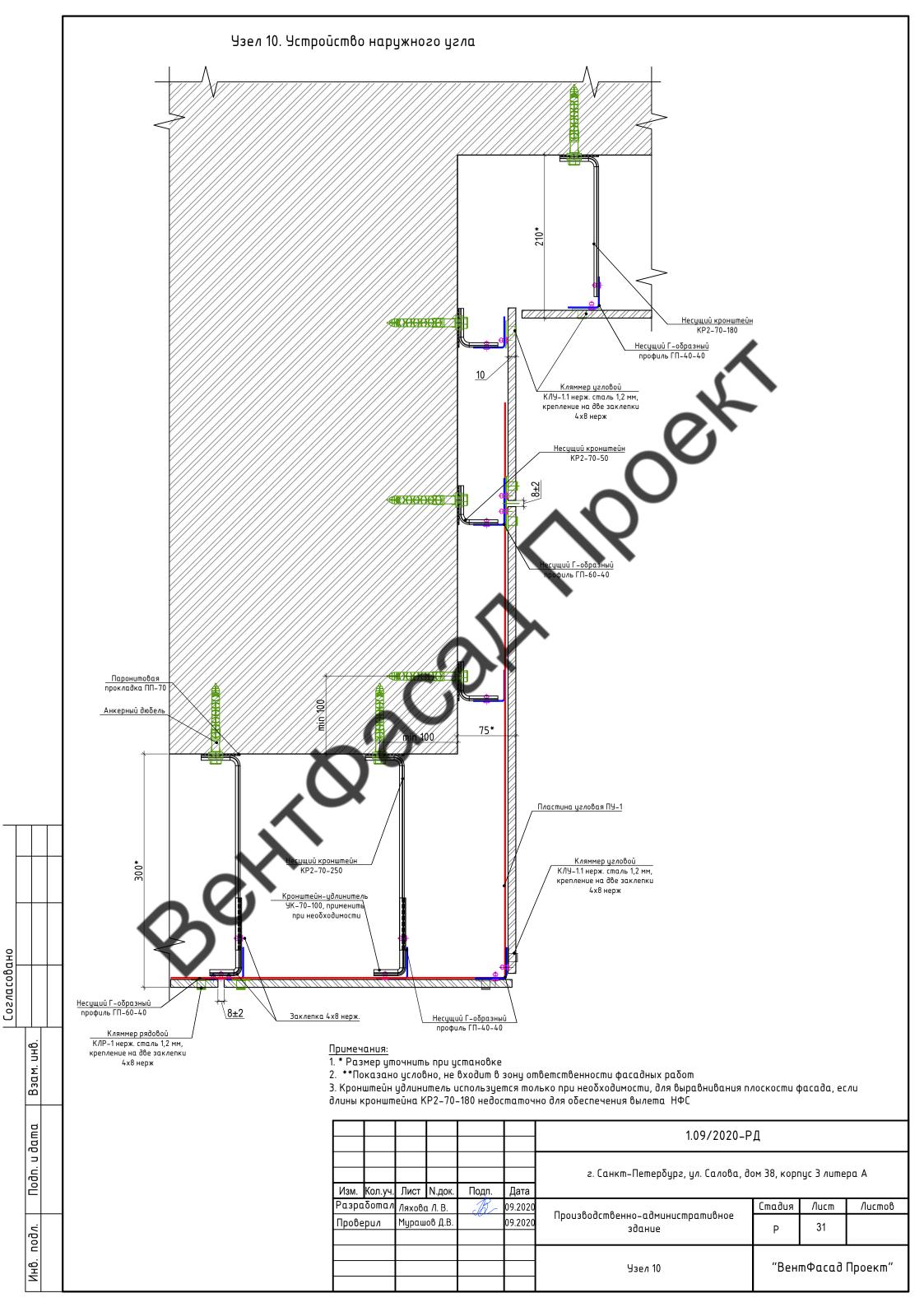

Примечания:

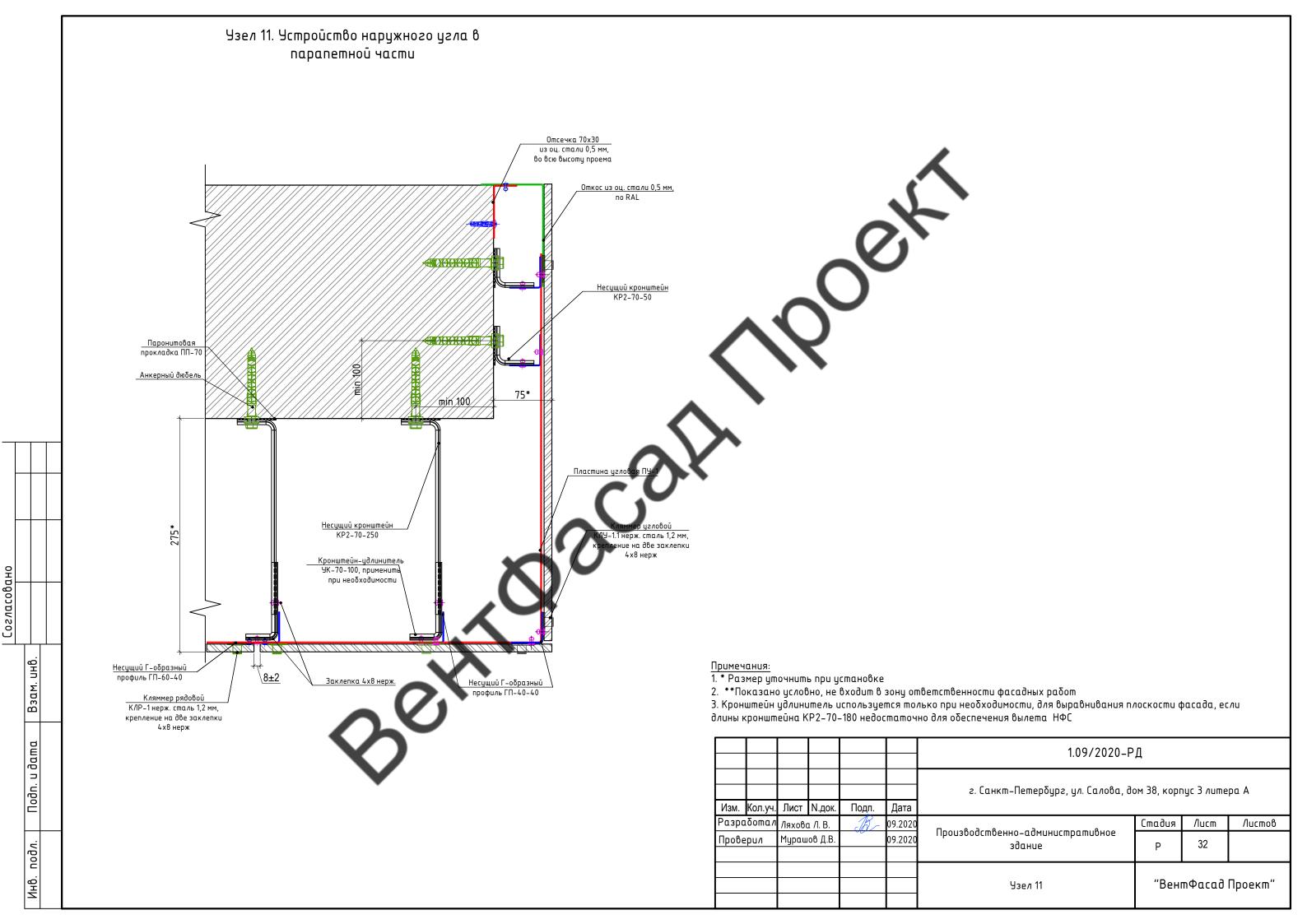

- 1. * Размер уточнить при установке
- 2. **Показано условно, не входит в зону ответственности фасадных работ
- 3. Кронштейн удлинитель используется только при необходимости, для выравнивания плоскости фасада, если длины кронштейна KP2-70-180 недостаточно для обеспечения вылета НФС

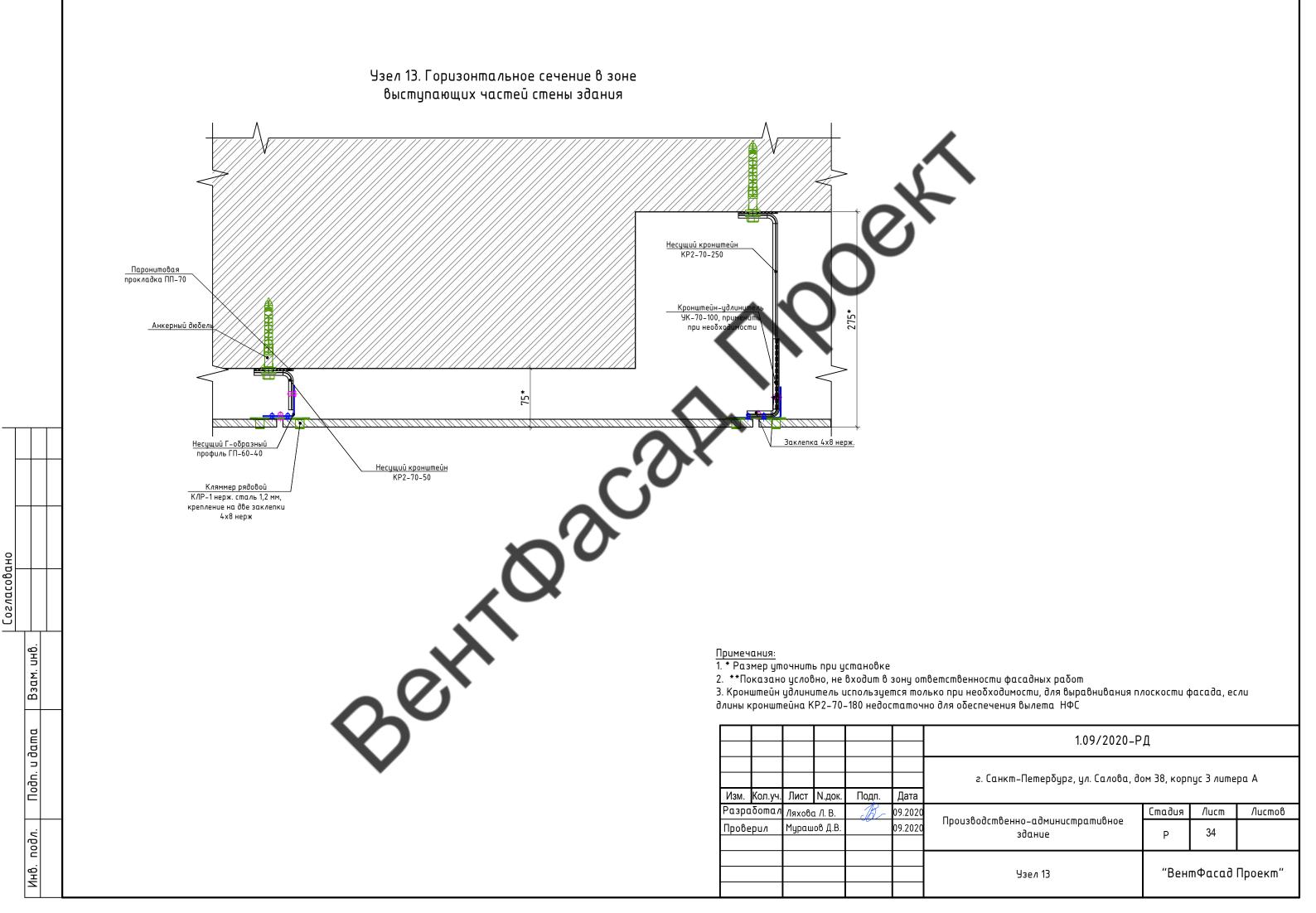

						1.09/2020-РД						
Изм.	Кол.уч.	Лист	N.док.	Подп.	Дата	г. Санкт-Петербург, ул. Салова, дом 38, корпус 3 литера А						
Разро	Разработал		ı Л. В.	B	09.2020		Стадия	/lucm	Листов			
Прове	Проверил		юв Д.В.		09.2020	Производственно-административное здание	Р	23				
						Узел 1	"Вені	тФасад	Проект"			

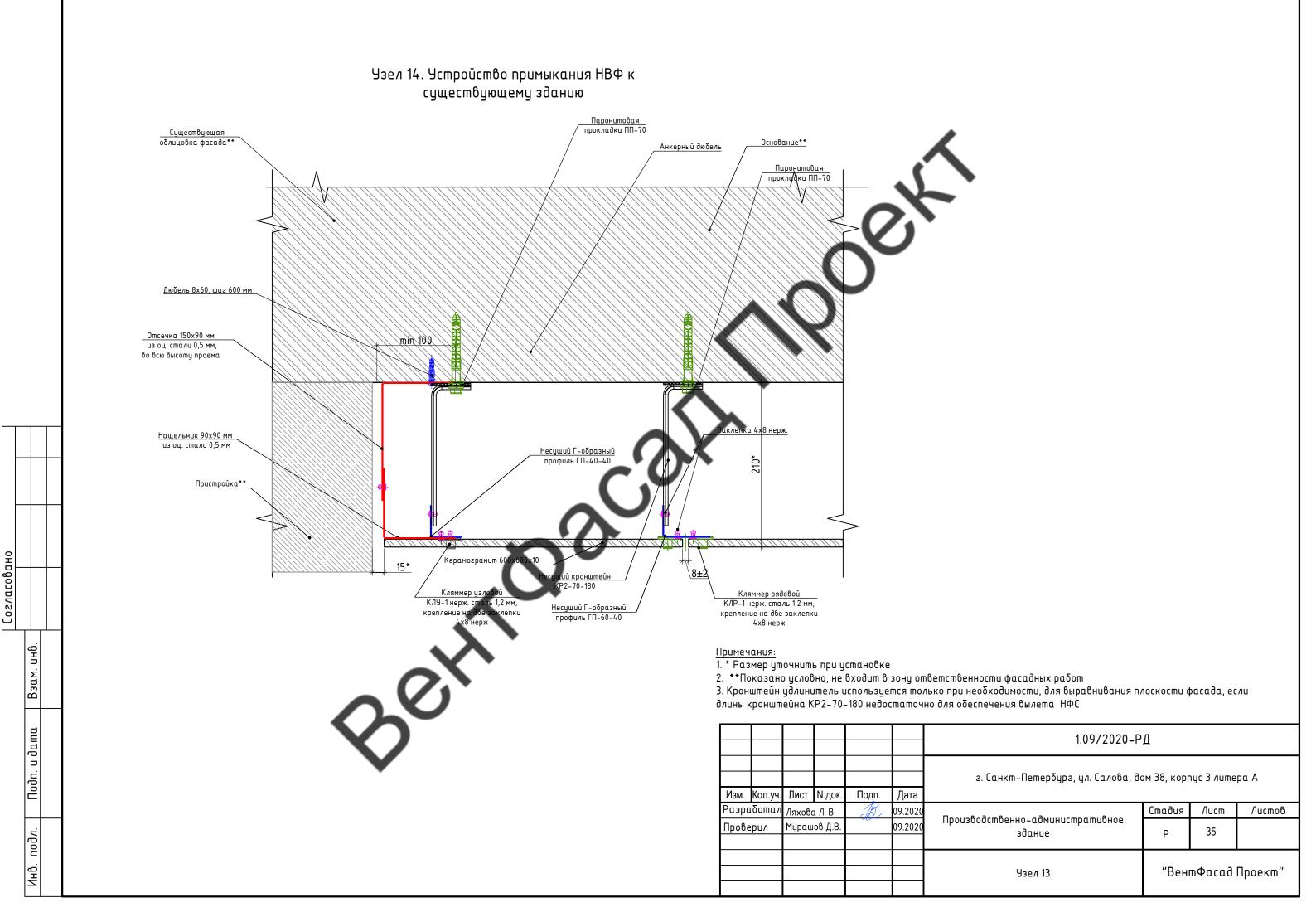


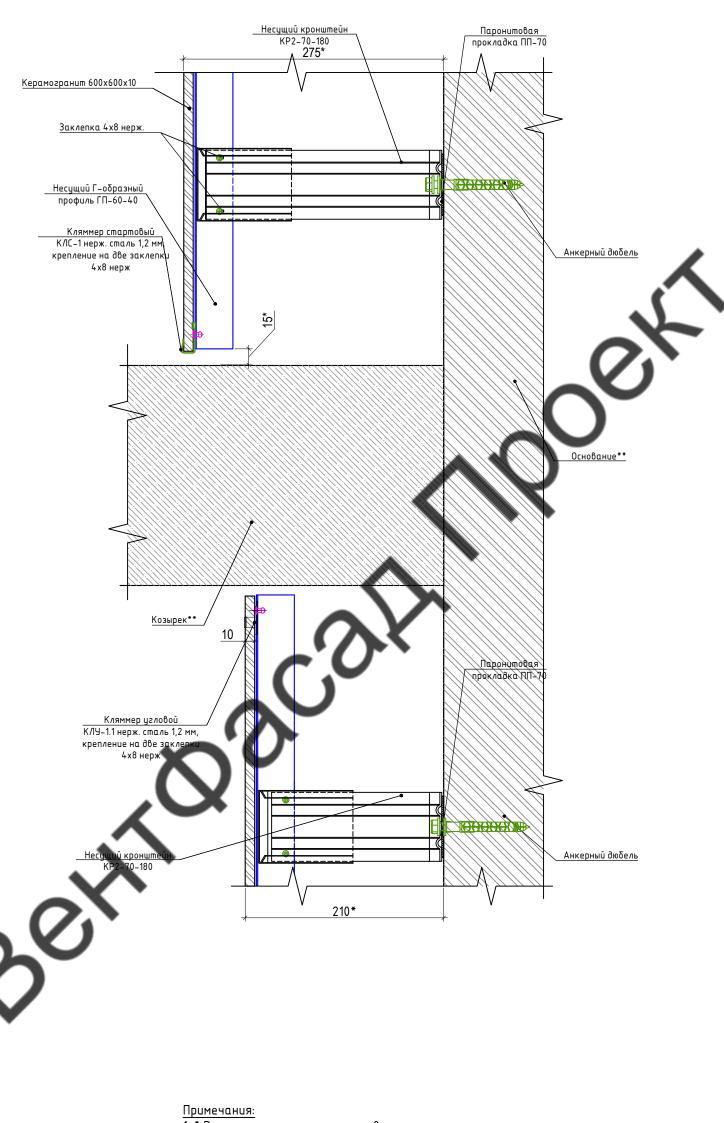










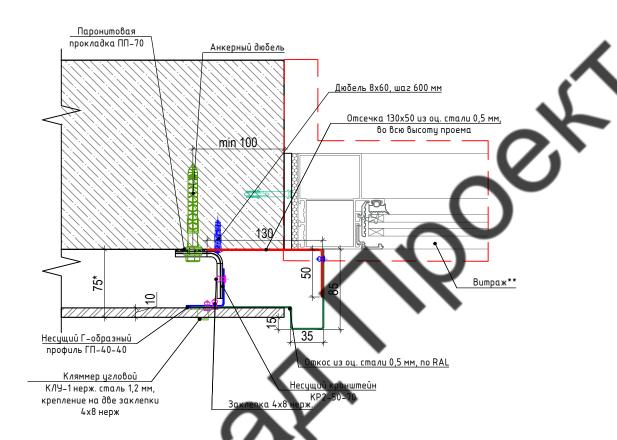


Узел 15. Устройство примыкания НВФ к козырьку

1. * Размер уточнить при установке

Согласовано

Взам. инв.


Подп. и дата

Инв. подл.

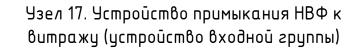
- 2. **Показано условно, не входит в зону ответственности фасадных работ
- 3. Кронштейн удлинитель используется только при необходимости, для выравнивания плоскости фасада, если длины кронштейна KP2-70-180 недостаточно для обеспечения вылета НФС

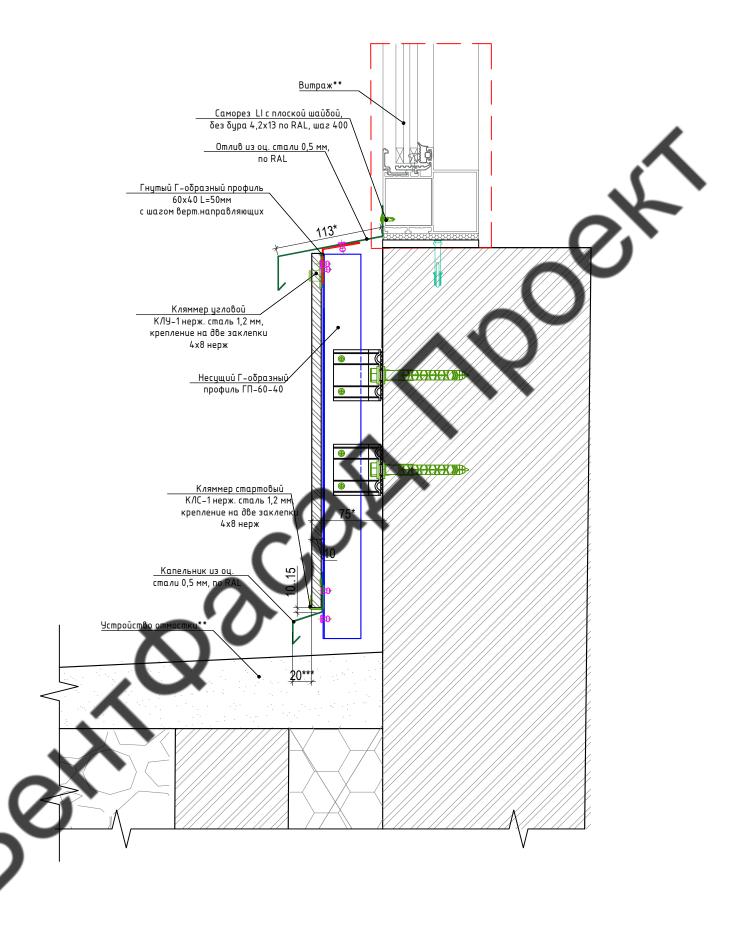
						1.09/2020-РД			
Изм.	Кол.уч.	Лист	N.док.	Подп.	Дата	г. Санкт-Петербург, ул. Салова, дом 38, корпус 3 литера А			
Разр	αδοπαν	Ляхово	ュ /1. В.	B	09.2020		ственно-административное здание Р 36		Листов
Пров	ерил	Мураш	юв Д.В.		09.2020	· · · · · · · · · · · · · · · · · · ·			
					Узел 15	"ВентФасад Проект"			

Узел 16. Устройство примыкания НВФ к витражу (устройство входной группы)

Примечания:

Согласовано


Взам. инв.


Подп. и дата

Инв. подл.

- 1. * Размер уточнить при установке
- 2. **Показано условно, не входит в зону ответственности фасадных работ
- 3. Кронштейн удлинитель используется только при необходимости, для выравнивания плоскости фасада, если длины кронштейна KP2-70-180 недостаточно для обеспечения вылета НФС

						1.09/2020-РД			
Мам	Кол.уч.	Пист	N nov	Подп.	Дата	г. Санкт-Петербург, ул. Салова, дом 38, корпус 3 литера А			
	αδοπαν		ı /І.В.	110 <u>4</u> 11.	дата 09.2020 09.2020	Производственно-административное	зводственно-административное здание Р 37 Узел 16 Стадия Лист Листов Р 37 "ВентФасад Проект"		Листов
	· ·	31				здание			
						Узел 16			

Примечания:

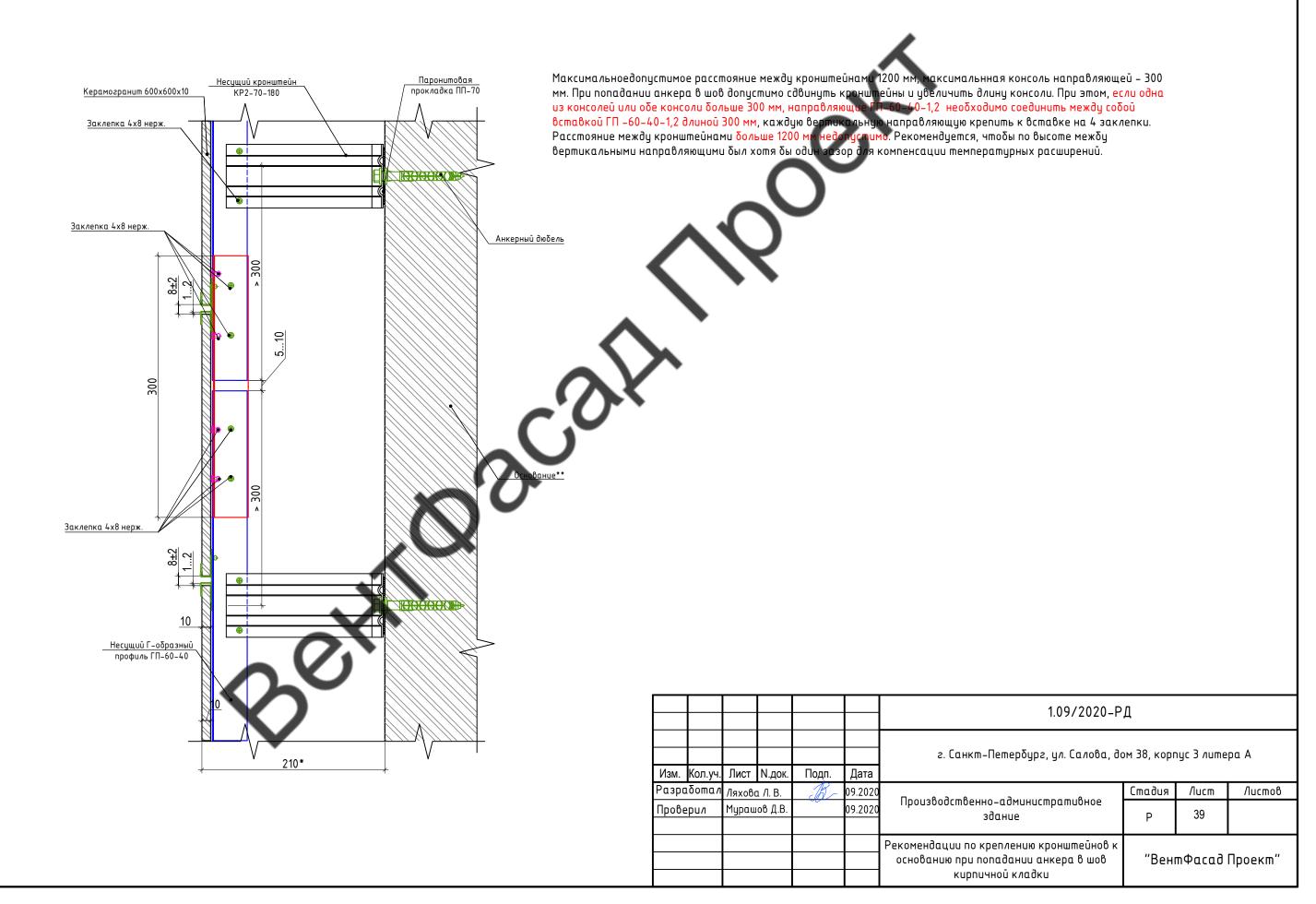
Согласовано

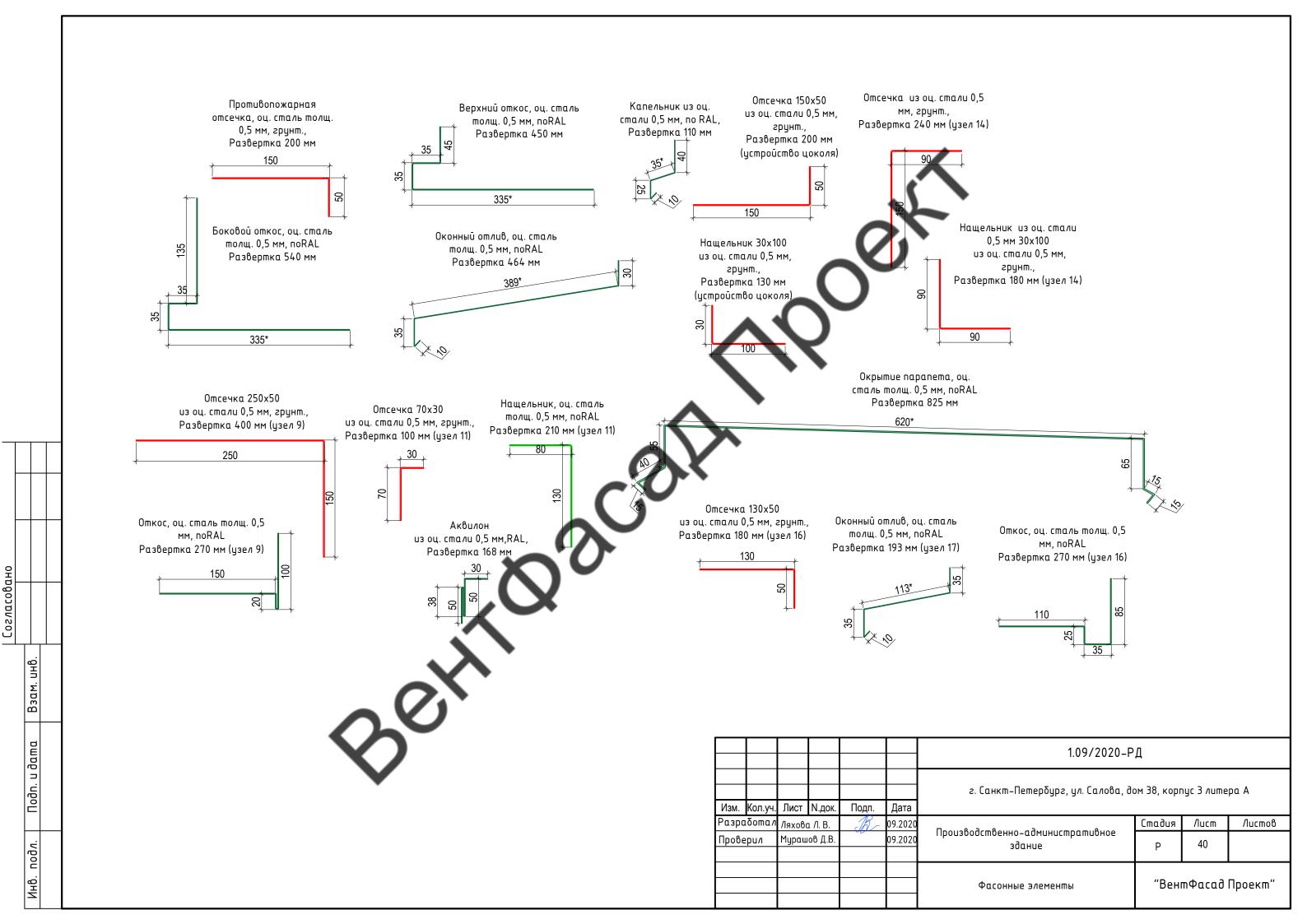
Взам. инв.

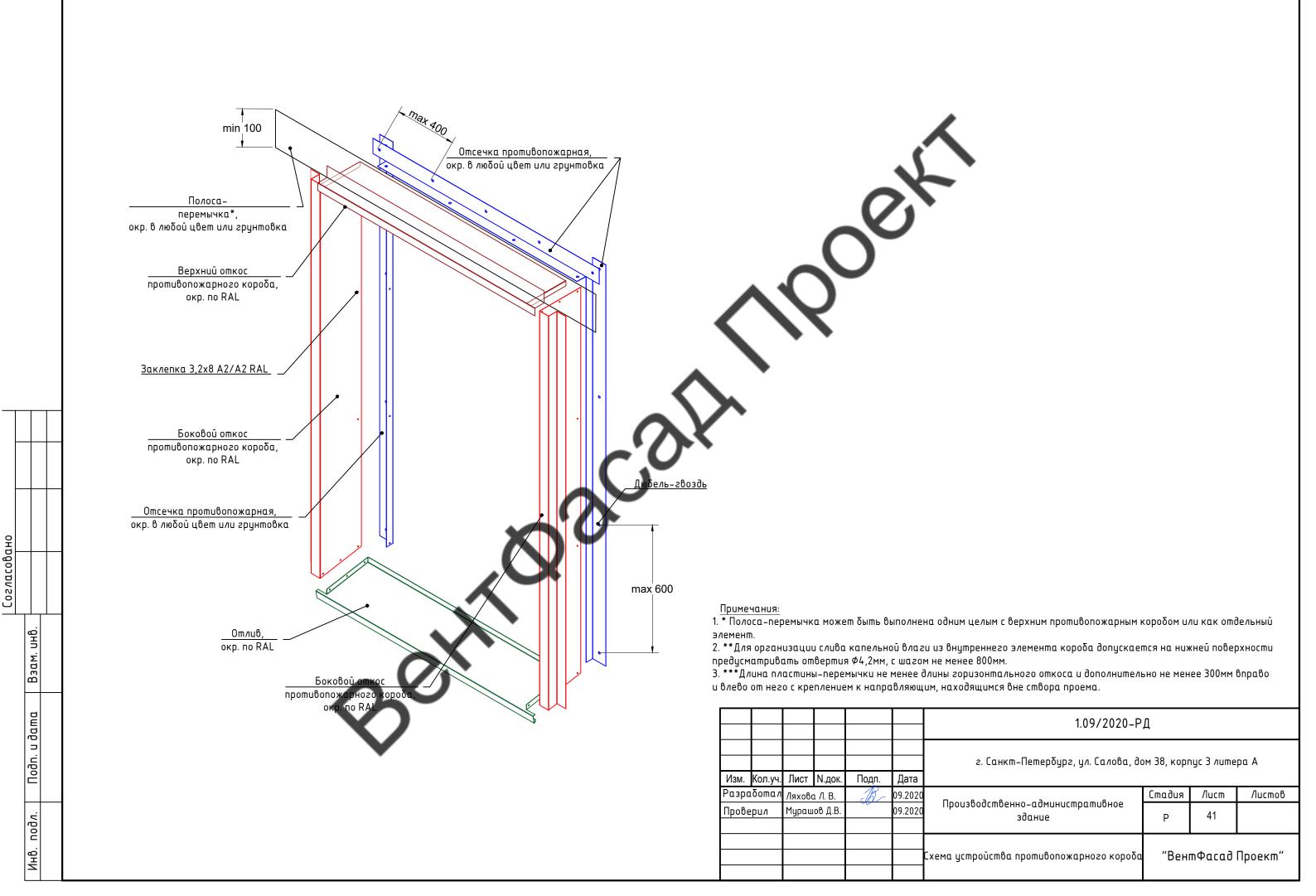
Подп. и дата

Инв. подл.

- 1. * Размер уточнить при установке
- 2. **Показано условно, не входит в зону ответственности фасадных работ
- 3. Кронштейн удлинитель используется только при необходимости, для выравнивания плоскости фасада, если длины кронштейна KP2-70-180 недостаточно для обеспечения вылета НФС


						1.09/2020-РД				
						г. Санкт-Петербург, ул. Салова, дом 38, корпус 3 литера А				
Изм.	Кол.уч.	Лист	N.док.	Подп.	Дата					
Разра	ιδομαν	Ляхово	ı /I. B.	B	09.2020	Стадия Лист Ли		Листов		
Прове	∙рил	Мураш	ов Д.В.		09.2020	Производственно-административное здание	Р	38		
						Узел 17	"ВентФасад Проект'		Проект"	


Рекомендации по креплению кронштейнов к основанию при попадании анкера в шов кирпичной кладки


Взам. инв.

Подп. и дата

подл.

СТАТИЧЕСКИЙ РАСЧЕТ навесной фасадной системы с воздушным зазором "ВЕКТОР-1"

Облицовка керамогранитом 600х600мм

Конструктивная схема "Тип-1" (крепление в полнотелый кирпич)

Административное здание по адресу г. Санкт-Петербург, ул. Салова, д. 38, корпус 3

Выполнил ____/Ляхова Л.В./

г.Санкт-Петербург, 2020г.

Исходные данные:			
Тип облицовки	1	Керамогранит	
Масса одного квадратного метра облицовочного материала	$G_{oбn}$	25	кг/м2
Масса одного погонного метра несущего профиля	G_{np}	0,92	кг/м
Горизонтальный шаг между направляющими в рядовой зоне	a	608	MM
Горизонтальный шаг между направляющими в угловой зоне	a	608	MM
Коэффициент надежности по нагрузке для направляющей	k_{np}	1,05	
Коэффициент надежности по нагрузке для облицовки	k _{обл}	1,2	
Материал несущих элементов	Оци	инкованная ста	ль
Материал несущих профилей	Оци	инкованная ста	ЛЬ
Предел текучести несущих элементов	$\varsigma_{\scriptscriptstyle T}$	2350	кг/см2
Максимально допустимое напряжение с учетом коэф.запаса 1,0	ς_{max}	2350,0	кг/см2
Предел текучести несущих профилей	$\varsigma_{\scriptscriptstyle T}$	2350,0	кг/см2
Максимально допустимое напряжение с учетом коэф.запаса 1,0	ς_{max}	2350,0	кг/см2
Модуль упругости стали	E	2,1*10^10	кг/м2
Ветровой район		II	
Тип местности		В	
Высота конструкции	h	12	М
Нормативное значение давления ветра, принимаемое в зависимости от	\mathbf{w}_0	30	кг/м2
ветрового района ([1], табл.11.1)	**0	30	1117
Аэродинамический коэффициент:			
для рядовой зоны	C_{p}	-1,2	
для угловой зоны	C_{p}	-2,2	. 1
Вынос облицовочного материала	e_1	250	MM
Пиковое значение ветровой нагрузки			-
для рядовой зоны	w	64,1	кг/м2
для угловой зоны	w	117,6	кг/м2
		•	
В расчете конструктивной схемы по Типу 1 рассчитывались:			
кронштейн	1	KP2-70	
доборный элемент		УК-70-1,2	
несущий профиль		ГП-60-40-1,2	
несущий профиль у проемов		ГП-40-40-1,2	
	w Ki	2220	
Усилие на вырыв анкер. элемента по ТС на анкер или по акту исп.	N	2330	Н
Допустимое усилие на вырыв анкерного элемента	Nmax	237,6	КГ

Расчет конструкции выполнен на нагрузки ленные в соответствии с СП 20.13330.2016(СНиП 2.01.07-85). При расчете рассмотрены следующие нагрузки весовая нагрузка от облицовочных плит и ко ветровая нагрузка в рядовой и угловой

В данном расчете рассматривается наиболее нагруженный вариант и гололедная нагрузка не учитывается, е ветровую учитывают только 25%, что ведет к заведомо улучшенным так как при гололедной нагруз результатам. В отдельных районах, где наблюдаются сочетания значительных скоростей ветра с большими размерами гололедно-из морозевых отложений, толщину стенки гололеда и его плотность, а также давление ветра следует принимать в соответствии с фактическими данными.

Расчет усилий возникающих в анкерных элементах

Вырывающее усилие в анкерном элементе

$$Nwir = N_0 \cdot \frac{e1}{e^2} + N_W$$

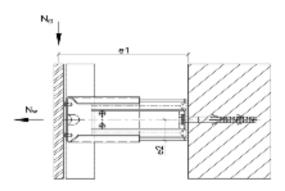


Рис.1

Вынос облицовочного материала		e1	250	MM		
Плечо реактивного момента, восприни	мающего нагрузку N _G	e2	35	MM		
			7 7			
$H_G = (G_{obs} \cdot k_{obs} \cdot a + G_{op} \cdot k_{op}) \cdot L_1$	$N_W = W \cdot a \cdot L_1$					
Шаг кронштейнов			•	•		
для рядовой зоны		L ₁	1200	MM		
для угловой зоны		L ₁	800	MM		
Нагрузка на кронштейн от собственного	о веса облицовки и профиля					
для рядовой зоны	•	N_{G}	23	кг		
для угловой зоны	`	N _G	15	кг		
Опорная реакция от расчетной ветрово	й нагрузки на кронштейн	V.				
для рядовой зоны		N _w	46,8	кг		
для угловой зоны	_ • /]	N _w	57,2	кг		
		,				
Вырывающее усилие в анкерном элеме	енте	_		-		
для рядовой зоны		Nvir	211,4	кг :	≤ 237,6	КГ
для угловой зоны		Nvir	166,9	КГ	≤ 237,6	кг

Условие прочности выполнено в рядовой зоне Условие прочности выполнено в угловой зоне

Расчет несущих кронштейнов

Параметры ослабленного сечения кронштейна:		KP2-70	
Момент сопротивления сечения	Wx	1876	мм3
Момент сопротивления сечения	Wz	132	ммЗ
Площадь поперечного сечения	Α	155	мм2

Расчетные напряжения в сечении несущего кронштейна, возникающие от ветровой и весовой нагрузки, в наиболее нагруженном сечении.

$$\sigma_{\mathrm{ep}} = \frac{N_{\mathcal{Q}}}{W_{\mathcal{X}}} \cdot s\mathbf{1} + \frac{N_{\mathcal{W}}}{A} + \frac{N_{\mathcal{W}}}{W_{\mathcal{Z}}} \cdot s\mathbf{3}$$

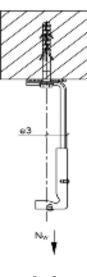


Рис.2

Расстояние от оси приложения горизонтальной ветровой нагрузки до центра масс рассматриваемого сечения

Расчетное напряжение

для рядовой зоны

для угловой зоны

Расчет доборного элемента

Параметры ослабленого сечения доборного элемента:		УК-70-1,2	
Момент сопротивления сечения	Wx	2405	ммЗ
Момент сопротивления сечения	Wz	219	ммЗ
Площадь поперечного сечения	Α	134	мм2

Расчетные напряжения в сечении доборного элемента, возникающие от ветровой и весовой нагрузки, в наиболее нагруженном сечении.

$$\sigma_{\rm gald} = \frac{N_Z}{W_X} \cdot \sigma \Phi + \frac{N_W}{A} + \frac{N_W}{W_Z} \cdot \sigma \Phi$$

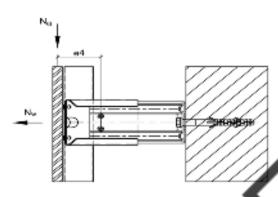


Рис.3

Расстояние от оси приложения нагрузки от собственного веса облицовки до рассматриваемого сечения (40-150мм)
Расчетное напряжение
для рядовой зоны
для угловой зоны

e4	100	MM			
ς _{доб}	472,5	кг/см2	≤	2350,0	кг/см2
Ç _{доб}	524,2	кг/см2	≤	2350,0	кг/см2

Условие прочности выполнено в рядовой зоне
 Условие прочности выполнено в угловой зоне

Расчет несущего профиля

Параметры элемента:		ГП-60-40-1,2	
Момент сопротивления сечения	Wx	540	ммЗ
Момент инерции в сечении	Jx	17100	мм4
Площадь поперечного сечения	Α	118	мм2
Расстояние от центра масс профиля направляющей до			
плоскости центра масс облицовочного материала	e5	16,5	MM

$$c_{AF} = \frac{N_G}{A} + \frac{M_W + M_C}{W_M}$$

$$Q_{to} = W \cdot \alpha$$

$$M_W = 0.125 \cdot Q_W \cdot L_1^2$$

$$M_{rr} = N_{rr} \cdot c5$$

0,390

1389,6

1119,0

кг*см

 $\kappa r/cm2 \le 2350,0 \kappa r/cm2$

кг/см2 ≤ 2350,0 кг/см2

Qw

 ς_{np}

Рис.4

Расчет напряжений в несущем профиле

Максимальный опорный момент от равномерно распределенной

ветровой нагрузки:

701,82 для рядовой зоны M_{W} для угловой зоны M_W 571,85

Равномерно распределенная расчетная ветровая нагрузка

на направляющую: для рядовой зоны

для угловой зоны Qw Максимальный момент от весовой нагрузки: 38,0 для рядовой зоны 25,4

для угловой зоны Расчетное напряжение для рядовой зоны

для угловой зоны

Условие прочности выполнено в рядовой зоне ⇔ Условие прочности выполнено в угловой

Расчет деформаций в несущем профиле

$$f = \frac{0.0082 \cdot Q_{vc} \cdot L_2^4}{B \cdot f_{W}} \qquad \qquad f_{mine} = \frac{L_1}{200}$$

Максимальная расчетная деформация

для рядовой зоны 8,0 мм 0,4 для угловой зоны MM 5,3 мм Максимально допустимые деформации для рядовой зоны 8,0 MM 5,3 для угловой зоны MM

<u>нено в рядовой зо</u>не ⇨ ыполнено в угловой зоне

Расчет несущего профиля у проемов

Параметры элемента:		ГП-40-40-1,2			
Момент сопротивления сечения	Wx	830	мм3		
Момент инерции в сечении	Jx	24471	mm4		
Площадь поперечного сечения	Α	94	мм2		
Расстояние от центра масс профиля направляющей до					
плоскости центра масс облицовочного материала	e5	19,0	MM		
Шаг кронштейнов					
для рядовой зоны	L_1	1200	MM		
Нагрузка на кронштейн от собственного веса облицовки и профиля					
для рядовой зоны	N_{G}	12	кг		. 1
Опорная реакция от расчетной ветровой нагрузки на кронштейн					
для рядовой зоны	N_W	46,8	КГ		
Расчет напряжений в несущем профиле					1
Максимальный опорный момент от равномерно распределенной				·K	J
ветровой нагрузки:					
для рядовой зоны	M_{W}	701,82	кг*см	•	
Равномерно распределенная расчетная ветровая нагрузка				_	
на направляющую:					
для рядовой зоны	Qw	0,390	кг/см		
Максимальный момент от весовой нагрузки:					
для рядовой зоны	M_G	21,89	кг*см		
Расчетное напряжение					
для рядовой зоны	ςπρ	884,20	кг/см2 ≤ 2	350,0 к	г/см2

Условие прочности выполнено

Расчет деформаций в несущем профиле

Максимальная расчетная деформация	\sim 1					
для рядовой зоны		f	0,8	MM ≤	6,0	MM
Максимально допустимые деформации в пролет длиной L_1						
для рядовой зоны		f_{max}	6,0	MM		

⇒ Условие прочности выполнено

Расчет прочности заклепочного соединения

Расчет срез

Количество заклепок	$n_{\scriptscriptstyle 3aK}$	2	ШТ
Количество плоскостей среза	n_{cpes}	1	ШТ
Расстояние между заклепками	e6	16	MM
Коэффициент надежности по материалу соединения на заклепках	\mathbf{y}_{mc}	1,25	_
Допустимое усилие на срез с учетом коэф.надеждности	Ns	269,20	кг

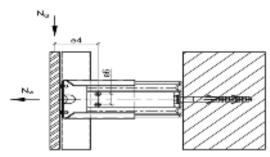
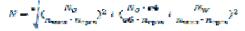



Рис.5

Расчетное усилие на срез для рядовой зоны для угловой зоны

N 167,8 κr ≤ 269,20 κr N 124,9 κr ≤ 269,20 κr

ΚГ

ΚГ

Условие прочности выполнено в рядовой зоне Условие прочности выполнено в угловой зоне

Расчет на смятие

⇔

$$N = \sqrt[8]{(\frac{N_G}{n_{\rm max.i}})^2 + (\frac{N_G \cdot e^4}{e^6} + \frac{N_W}{n_{\rm max.i}})^2}$$

 Диаметр заклепки
 d
 4
 мм

 Минимальная толщина склепываемых материалов
 t
 1,2
 мм

 Предел текучести материала заклепки
 ς_{τ} 2650
 кг/см2

 Коэффициент зависящий от соотношения толщин соединяемых мат.
 α 2,16

$$F = \frac{a \cdot a_T \cdot a \cdot \epsilon}{v_{max}}$$

Расчетное усилие на смятие

для рядовой зоны

для угловой зоны

N

167,8

кг ≤ 220,2

для угловой зоны

N

124,9

кг ≤ 220,2

Расчетная прочность заклепочного соединения на смятие

F

220,2

кг

Условие прочности выполнено в рядовой зоне Условие прочности выполнено в угловой зоне

Выводы

Система навесного вентилируемого фасада "Вектор-1" с применением

доборного элемента несущего профиля ГП-60-40-1,2 ГП-40-40-1,2 несущего профиля у проемов

допустима к применению на объекте:

Административное здание

по адресу г. Санкт-Петербург, ул. Салова, д. 38, корпус 3

Керамогранит Тип облицовки

Крепление кронштейнов осуществляется анкерным элементом согласно Акту испытаний крепежных элементов №20СПб 208 от 17 Сентября 2020 г.

Схема крепления:

Рядовая зона: шаг кронштейнов/шаг направляющих Угловая зона: шаг кронштейнов/шаг направляющих Шаг кронштейнов в районе проемов

1200	мм / 608 мм
800	мм / 608 мм
1200	MM

KP2-70

УК-70-1,2

Фиксар ДФ-Б 10х135TD

Нормативные документы:

- 1. СНиП 2.01.07-85* СП 20.13330.2016 "Нагрузки и воздействия". Москва 2016.
- 2. Альбом технических решений системы навесного вентилируемого фасада «Вект